Effects of Air Pollution on the Risk of Low Birth Weight in a Cold Climate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Exposure Assessment
2.3. Outcome of Interest
2.4. Covariates
2.5. Statistical Methods
3. Results
3.1. Characteristics of the Study Population
3.2. Exposure Distributions
3.3. The Joint Effects of Air Pollution Exposures on the Risk of Low Birth Weight
4. Discussion
4.1. Main Findings
4.2. Validity of Results
4.3. Synthesis with Previous Knowledge
4.4. Biological Plausibility
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Single Pollutant Model | Low Birth Weight <3000 g | Born in Spring–Summer | Born in Autumn–Winter | |||
---|---|---|---|---|---|---|
Cr. RR (95% CI) | Adj. RR (95% CI) | Cr. RR (95% CI) | Adj. RR (95% CI) | Cr. RR (95% CI) | Adj. RR (95% CI) | |
PM2.5 per 10 ug/m3 | 0.92 (0.72–1.16) | 0.91 (0.71–1.16) | 0.95 (0.69–1.33) | 0.95 (0.68–1.32) | 0.86 (0.60–1.23) | 0.86 (0.60–1.23) |
PM10 per 10 ug/m3 | 0.93 (0.75–1.14) | 0.92 (0.74–1.14) | 0.96 (0.71–1.28) | 0.95 (0.71–1.28) | 0.88 (0.65–1.21) | 0.88 (0.64–1.21) |
O3 per 10 ppb | 0.84 (0.58–1.24) | 0.79 (0.51–1.25) | 0.98 (0.53–1.80) | 0.98 (0.53–1.80) | 0.64 (0.34–1.22) | 0.62 (0.33–1.19) |
NO2 per 10 ppb | 0.89 (0.37–2.12) | 0.91 (0.37–2.20) | 0.87 (0.25–2.98) | 0.89 (0.25–3.13) | 0.90 (0.26–3.12) | 0.91 (0.26–3.20) |
CO per 10 ppb | 1.00 (0.98–1.02) | 1.00 (0.98–1.02) | 1.01 (0.98–1.04) | 1.01 (0.98–1.04) | 0.99 (0.96–1.02) | 0.99 (0.96–1.02) |
SO2 per 10 ppb | 0.94 (0.54–1.63) | 0.94 (0.54–1.65) | 0.90 (0.42–1.94) | 0.90 (0.42–1.94) | 0.98 (0.43–2.21) | 0.98 (0.43–2.21) |
Single and Multipollutant Models | Low Birth Weight <3000 g | Spring–Summer (Warm Season) | Autumn–Winter (Cold Season) | |||
---|---|---|---|---|---|---|
Crude RR (95% CI) | Adjusted RR (95% CI) 1 | Crude RR (95% CI) | Adjusted RR (95% CI) 2 | Crude RR (95% CI) | Adjusted RR (95% CI) 2 | |
PM2.5(Q3 ≥ 19.5 µg/m3) | 0.99 (0.80–1.22) | 0.98 (0.79–1.22) | 1.09 (0.81–1.48) | 1.12 (0.82–1.53) | 0.88 (0.65–1.21) | 0.87 (0.63–1.19) |
PM10(Q3 ≥ 21.15 µg/m3) | 1.04 (0.84–1.29) | 1.04 (0.84–1.29) | 1.10 (0.81–1.49) | 1.14 (0.83–1.55) | 0.98 (0.72–1.34) | 0.97 (0.71– 1.32) |
NO2 (Q3 ≥ 4.41 ppb) | 0.94 (0.76–1.17) | 0.96 (0.77–1.19) | 0.95 (0.71–1.28) | 0.98 (0.72–1.32) | 0.93 (0.69–1.27) | 0.94 (0.69–1.29) |
CO (Q3 ≥ 295.97 ppb) | 0.92 (0.75–1.14) | 0.94 (0.76–1.17) | 1.00 (0.74–1.35) | 1.03 (0.76–1.39) | 0.84 (0.62–1.15) | 0.86 (0.63–1.17) |
SO2 (Q3 ≥ 3.75 ppb) | 1.01 (0.81–1.25) | 1.02 (0.82–1.26) | 1.04 (0.77–1.41) | 1.08 (0.80–1.47) | 0.97 (0.71–1.32) | 0.96 (0.71–1.32) |
O3 (Q3 ≥ 23.93 ppb) | 0.91 (0.73–1.13) | 0.89 (0.69–1.14) | 1.07 (0.76–1.49) | 1.08 (0.77–1.52) | 0.74 (0.53–1.04) | 0.73 (0.52–1.02) |
Single and Multipollutant Models | Low Birth Weight <2500 g | Spring–Summer (Warm Season) | Autumn–Winter (Cold Season) | |||
---|---|---|---|---|---|---|
Crude RR (95% CI) | Adjusted RR (95% CI) 1 | Crude RR (95% CI) | Adjusted RR (95% CI)2 | Crude RR (95% CI) | Adjusted RR (95% CI)2 | |
PM2.5(Q4 ≥ 22.1 µg/m3) 3 | 1.42 (0.91–2.21) | 1.39 (0.88–2.20) | 2.31 (1.29–4.15) | 2.31 (1.28–4.16) | 0.67 (0.28–1.57) | 0.56 (0.22–1.43) |
(PM2.5 + O3) | 1.65 (1.04–2.61) | 1.56 (0.98–2.48) | 2.99 (1.62–5.53) | 2.69 (1.46–4.95) | 0.69 (0.29–1.65) | 0.59 (0.23–1.51) |
(PM2.5 + SO2) | 1.09 (0.55–2.15) | 1.05 (0.52–2.11) | 2.69 (1.06–6.83) | 2.45 (0.94–6.37) | 0.41 (0.14–1.17) | 0.34 (0.11–1.07) |
PM10(Q4 ≥ 24.1 µg/m3) 3 | 1.30 (0.83–2.04) | 1.26 (0.79–2.00) | 2.05 (1.14–3.68) | 2.00 (1.11–3.62) | 0.63 (0.27–1.49) | 0.54 (0.21–1.37) |
(PM10 + CO) | 0.73 (0.39–1.35) | 0.71 (0.38–1.32) | 0.65 (0.29–1.46) | 0.60 (0.26–1.35) | 0.64 (0.23–1.81) | 0.57 (0.19–1.72) |
(PM10 + NO2) | 1.15 (0.57–, 2.31) | 1.08 (0.52–2.25) | 2.39 (0.88–6.48) | 2.32 (0.82–6.60) | 0.50 (0.17–1.51) | 0.42 (0.13–1.35) |
NO2 (Q4 ≥ 5.1 ppb) 3 | 1.31 (0.83–2.05) | 1.30 (0.81–2.06) | 1.69 (0.94–3.06) | 1.69 (0.93–3.09) | 0.92 (0.43–1.97) | 0.85 (0.38–1.92) |
(NO2 + PM10) | 1.18 (0.58–2.37) | 1.22 (0.58–2.55) | 0.83 (0.30–2.26) | 0.83 (0.29–2.40) | 1.40 (0.53–3.69) | 1.46 (0.52–4.07) |
(NO2 + SO2) | 0.81 (0.38–1.73) | 0.78 (0.35–1.73) | 1.08 (0.37–3.14) | 0.88 (0.27–2.83) | 0.57 (0.18–1.76) | 0.58 (0.18–1.87) |
CO (Q4 ≥ 329.7 ppb) 3 | 1.80 (1.18–2.76) | 1.81 (1.17–2.80) | 3.40 (1.87–6.18) | 3.53 (1.93–6.48) | 0.76 (0.34–1.69) | 0.67 (0.28–1.59) |
(CO + O3) | 2.01 (1.30–3.10) | 1.94 (1.25–3.03) | 4.20 (2.28–7.76) | 3.92 (2.11–7.30) | 0.78 (0.34–1.75) | 0.69 (0.29–1.64) |
(CO + PM10) | 2.23 (1.24–4.01) | 2.27 (1.26–4.09) | 4.64 (2.04–10.55) | 5.16 (2.24–11.89) | 0.97 (0.37–2.56) | 0.91 (0.33–2.56) |
(CO + SO2) | 1.90 (1.00–3.60) | 1.88 (0.99–3.57) | 6.10 (2.70–13.76) | 5.93 (2.59–13.58) | 0.49 (0.18–1.37) | 0.45 (0.16–1.33) |
SO2 (Q4 ≥ 4.7 ppb) 3 | 1.52 (0.98–2.35) | 1.51 (0.96–2.36) | 1.83 (1.02–3.29) | 1.92 (1.06–3.49) | 1.22 (0.61–2.47) | 1.12 (0.54–2.34) |
(SO2 + O3) | 1.82 (1.15–2.89) | 1.75 (1.10–2.80) | 2.35 (1.27–4.36) | 2.34 (1.26–4.35) | 1.33 (0.64–2.76) | 1.23 (0.57–2.65) |
(SO2 + PM2.5) | 1.42 (0.73–2.79) | 1.45 (0.73–2.90) | 0.83 (0.32–2.11) | 0.92 (0.35–2.42) | 2.04 (0.86–4.84) | 2.03 (0.83–4.93) |
(SO2 + CO) | 0.93 (0.48–1.80) | 0.94 (0.49–1.82) | 0.46 (0.20–1.02) | 0.50 (0.22–1.12) | 1.89 (0.77–4.62) | 1.78 (0.71–4.43) |
(SO2 + NO2) | 1.79 (0.86–3.74) | 1.83 (0.85–3.95) | 1.72 (0.59–4.98) | 2.14 (0.67–6.85) | 1.84 (0.65–5.20) | 1.64 (0.57–4.70) |
O3 (Q4 ≥ 26 ppb) 3 | 1.68 (1.09–2.59) | 1.89 (1.14–3.14) | 4.47 (2.21–9.02) | 4.03 (1.96–8.28) | 1.22 (0.68–2.18) | 1.24 (0.68–2.24) |
(O3 + PM2.5) | 1.89 (1.21–2.96) | 2.05 (1.22– 3.44) | 6.24 (2.99–13.03) | 4.95 (2.33–10.49) | 1.16 (0.64–2.09) | 1.15 (0.63–2.10) |
(O3 + CO) | 1.90 (1.22–2.95) | 2.05 (1.23–3.43) | 6.36 (3.09–13.11) | 4.82 (2.29–10.17) | 1.19 (0.66–2.14) | 1.20 (0.66–2.18) |
(O3 + SO2) | 1.97 (1.25–3.11) | 2.16 (1.28–3.64) | 5.78 (2.77–12.08) | 4.99 (2.35–10.61) | 1.29 (0.70–2.37) | 1.29 (0.69–2.41) |
CO Entire Pregnancy | O3 Entire Pregnancy | n/N | % of LBW <2500 g | Crude RR (95% CI) | Adjusted RR (95% CI) 1 | ERR (95% CI) 1 | RERI (95% CI) 1 |
---|---|---|---|---|---|---|---|
Low (<Q4) | Low (<Q4) | 37/1351 | 2.74 | 1 | 1 | ||
High (>Q4) | Low (<Q4) | 21/545 | 3.85 | 1.41 (0.83–2.38) | 1.34 (0.80–2.26) | 0.31 (−0.20–1.16) | |
Low (<Q4) | High (>Q4) | 19/532 | 3.57 | 1.30 (0.76–2.25) | 1.41 (0.73–2.70) | 0.41 (−0.27–1.70) | |
High (>Q4) | High (>Q4) | 13/89 | 14.61 | 5.33 (2.94–9.66) | 5.75 (2.87–11.54) | 4.75 (1.87–10.54) | 4.03 (1.61–9.28) |
PM2.5 Entire Pregnancy | O3 Entire Pregnancy | ||||||
Low (<Q4) | Low (<Q4) | 38/1327 | 2.86 | 1 | 1 | ||
High (>Q4) | Low (<Q4) | 20/569 | 3.51 | 1.23 (0.72–2.09) | 1.15 (0.68–1.95) | 0.15 (−0.32–0.95) | |
Low (<Q4) | High (>Q4) | 23/559 | 4.11 | 1.44 (0.86–2.39) | 1.56 (0.83–2.92) | 0.56 (−0.17–1.92) | |
High (>Q4) | High (>Q4) | 9/62 | 14.52 | 5.07 (2.57–10.01) | 5.24 (2.53–10.87) | 4.24 (1.53–9.87) | 3.53 (1.19–8.70) |
References
- World Health Organization. ICD-10: International Statistical Classification of Diseases and Related Health Problems: Tenth Revision, 2nd ed.; World Health Organization: Geneva, Switzerland, 2004; Available online: https://apps.who.int/iris/handle/10665/42980 (accessed on 21 June 2020).
- Barker, D.J. The fetal and infant origins of adult disease. BMJ 1990, 301, 1111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Global Nutrition Targets 2025: Low Birth Weight Policy Brief (WHO/NMH/NHD/14.5); World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- United Nations Children’s Fund and World Health Organization. Low Birthweight: Country, Regional and Global Estimates; UNICEF: New York, NY, USA, 2004. [Google Scholar]
- European Perinatal Health Report. The Health and Care of Pregnant Women and Babies in Europe in 2010. Available online: http://www.europeristat.com/ (accessed on 28 July 2020).
- Vieira, S.E. The health burden of pollution: The impact of prenatal exposure to air pollutants. Int. J. Chron. Obstruct. Pulmon. Dis. 2015, 10, 1111–1121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, X.; Liu, Y.; Chen, Y.; Yao, C.; Che, Z.; Cao, J. Maternal exposure to fine particulate matter (PM2.5) and pregnancy outcomes: A meta-analysis. Environ. Sci. Pollut. Res. 2015, 22, 3383–3396. [Google Scholar] [CrossRef] [PubMed]
- Dadvand, P.; Parker, J.; Bell, M.L.; Bonzini, M.; Brauer, M.; Darrow, L.A.; Gehring, U.; Glinianaia, S.V.; Gouveia, N.; Ha, E.H.; et al. Maternal exposure to particulate air pollution and term birth weight: A multi-country evaluation of effect and heterogeneity. Environ. Health Perspect 2013, 121, 267–373. [Google Scholar] [CrossRef] [PubMed]
- Stieb, D.M.; Chen, L.; Eshoul, M.; Judek, S. Ambient air pollution, birth weight and preterm birth: A systematic review and meta-analysis. Environ. Res. 2012, 117, 100–111. [Google Scholar] [CrossRef] [PubMed]
- Maisonet, M.; Correa, A.; Misra, D.; Jaakkola, J.J. A review of the literature on the effects of ambient air pollution on fetal growth. Environ. Res. 2004, 95, 106–115. [Google Scholar] [CrossRef]
- Maisonet, M.; Bush, T.J.; Correa, A.; Jaakkola, J.J. Relation between ambient air pollution and low birth weight in the Northeastern United States. Environ. Health Perspect. 2001, 109, 351–356. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, M.; Giorgis-Allemand, L.; Bernard, C.; Aguilera, I.; Andersen, A.M.; Ballester, F.; Beelen, R.M.; Chatzi, L.; Cirach, M.; Danileviciute, A.; et al. Ambient air pollution and low birthweight: A European cohort study (ESCAPE). Lancet Respir. Med. 2013, 1, 695–704. [Google Scholar] [CrossRef]
- Shah, P.S.; Balkhair, T. Air pollution and birth outcomes: A systematic review. Environ. Int. 2011, 37, 498–516. [Google Scholar] [CrossRef]
- Sapkota, A.; Chelikowsky, A.P.; Nachman, K.E.; Cohen, A.J.; Ritz, B. Exposure to particulate matter and adverse birth outcomes: A comprehensive review and meta-analysis. Air Qual. Atmos. Health. 2012, 5, 369–381. [Google Scholar] [CrossRef]
- Siddika, N.; Rantala, A.K.; Antikainen, H.; Balogun, H.; Amegah, A.K.; Ryti, N.R.I.; Kukkonen, J.; Sofiev, M.; Jaakkola, M.S.; Jaakkola, J.J.K. Synergistic Effects of Prenatal Exposure to Fine Particulate Matter (PM 2.5) and Ozone (O 3) on the Risk of Preterm Birth: A Population-Based Cohort Study. Environ. Res. 2019, 176, 108549. [Google Scholar] [CrossRef] [PubMed]
- Kukkonen, J.; Karl, M.; Keuken, M.P.; Van der Gon, H.A.C.; Denby, B.R.; Singh, V.; Douros, J.; Manders, A.; Samaras, Z.; Moussiopoulos, N.; et al. Modelling the dispersion of particle numbers in five European cities. Geosci. Model Dev. 2016, 9, 451–478. [Google Scholar] [CrossRef] [Green Version]
- Kukkonen, J.; López-Aparicio, S.; Segersson, D.; Geels, C.; Kangas, L.; Kauhaniemi, M.; Maragkidou, A.; Jensen, A.; Assmuth, T.; Karppinen, A.; et al. The influence of residential wood combustion on the concentrations of PM2.5 in four Nordic cities. Atmos. Chem. Phys. 2020, 20, 4333–4365. [Google Scholar] [CrossRef] [Green Version]
- Jaakkola, J.J.; Jaakkola, N.; Ruotsalainen, R. Home dampness and molds as determinants of respiratory symptoms and asthma in pre-school children. J. Expo. Anal. Environ. Epidemiol. 1993, 3, 129–142. [Google Scholar]
- Jaakkola, J.J.; Hwang, B.F.; Jaakkola, N. Home dampness and molds, parental atopy, and asthma in childhood: A six-year population-based cohort study. Environ Health Perspect. 2005, 113, 357–361. [Google Scholar] [CrossRef]
- Rantala, A.K.; Jaakkola, M.S.; Mäkikyrö, E.M.; Hugg, T.T.; Jaakkola, J.J. Early respiratory infections and the development of asthma in the first 27 years of life. Am. J. Epidemiol. 2015, 182, 615–623. [Google Scholar] [CrossRef] [Green Version]
- Sofiev, M.; Kouznetsov, R.; Prank, M.; Soares, J.; Vira, J.; Tarvainen, V. A Long-Term Re-Analysis of Atmospheric Composition and Air Quality; ITM 2016, Springer Proceedings in Complexity ; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Sofiev, M.; Vira, J.; Kouznetsov, R.; Prank, M.; Soares, J.; Genikhovich, E. Construction of the SILAM Eulerian atmospheric dispersion model based on the advection algorithm of Michael Galperin. Geosci. Model Developm. 2015, 8, 3497–3522. [Google Scholar] [CrossRef] [Green Version]
- Kukkonen, J.; Kangas, L.; Kauhaniemi, M.; Sofiev, M.; Aarnio, M.; Jaakkola, J.J.K.; Kousa, A.; Karppinen, A. Modelling of the urban concentrations of PM2.5 on a high resolution for a period of 35 years, for the assessment of lifetime exposure and health effects. Atmos. Chem. Phys. 2018, 18, 8041–8064. [Google Scholar] [CrossRef] [Green Version]
- Aalto, J.; Pirinen, P.; Jylhä, K. New gridded daily climatology of Finland: Permutation-based uncertainty estimates and temporal trends in climate. J. Geophys. Res. Atmos. 2016, 121, 3807–3823. [Google Scholar] [CrossRef] [Green Version]
- Deal, S.B.; Bennett, A.C.; Rankin, K.M.; Collins, J.W. The relation of age to low birth weight rates among foreign-born black mothers: A population-based exploratory study. Ethn. Dis. 2014, 24, 413–417. [Google Scholar]
- Khoshnood, B.; Wall, S.; Kwang-Sun, L. Risk of low birth weight associated with advanced maternal age among four ethnic groups in the United States. Mat. Child Health J. 2005, 9, 3–9. [Google Scholar] [CrossRef]
- Roy, P.; Kumar, A.; Kaur, I.R.; Faridi, M.M. Gender differences in outcomes of low birth weight and preterm neonates: The male disadvantage. J. Trop. Pediatr. 2014, 60, 480–481. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, R.; Rankin, J.; Pless-Mulloli, T.; Glinianaia, S. Does the effect of air pollution on pregnancy outcomes differ by gender? A systematic review. Environ. Res. 2007, 105, 400–408. [Google Scholar] [CrossRef] [PubMed]
- Madden, D. The relationship between low birth weight and socioeconomic status in Ireland. J. Biosoc. Sci. 2014, 46, 248–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinson, M.L.; Reichman, N.E. Socioeconomic inequalities in low birth weight in the United States, the United Kingdom, Canada, and Australia. Am. J. Public Health 2016, 106, 748–754. [Google Scholar] [CrossRef]
- Ko, T.J.; Tsai, L.Y.; Chu, L.C.; Yeh, S.J.; Leung, C.; Chen, C.Y.; Chou, H.C.; Tsao, P.N.; Chen, P.C.; Hsieh, W.S. Parental smoking during pregnancy and its association with low birth weight, small for gestational age, and preterm birth offspring: A birth cohort study. Pediatr. Neonatol. 2014, 55, 20–27. [Google Scholar] [CrossRef] [Green Version]
- Sclowitz, I.K.; Santos, I.S.; Domingues, M.R.; Matijasevich, A.; Barros, A.J. Maternal smoking in successive pregnancies and recurrence of low birthweight: The 2004 Pelotas birth cohort study, Brazil. Cad Saude Publica. 2013, 29, 123–130. [Google Scholar] [CrossRef] [Green Version]
- Miyake, Y.; Tanaka, K.; Arakawa, M. Active and passive maternal smoking during pregnancy and birth outcomes: The Kyushu Okinawa maternal and child health study. BMC Pregnancy Childbirth 2013, 6, 157. [Google Scholar] [CrossRef] [Green Version]
- Ion, R.C.; Wills, A.K.; Bernal, A.L. Environmental tobacco smoke exposure in pregnancy is associated with earlier delivery and reduced birth weight. Reprod. Sci. 2015, 22, 1603–1611. [Google Scholar] [CrossRef] [Green Version]
- Mohd Zain, N.; Low, W.Y.; Othman, S. Impact of maternal marital status on birth outcomes among young Malaysian women: A prospective cohort study. Asia Pac. J. Public Health 2015, 27, 335–347. [Google Scholar] [CrossRef]
- Sullivan, K.; Raley, R.K.; Hummer, R.A.; Schiefelbein, E. The potential contribution of marital-cohabitation status to racial, ethnic, and nativity differentials in birth outcomes in Texas. Matern. Child Health J. 2012, 16, 775–784. [Google Scholar] [CrossRef] [PubMed]
- Rothman, K.J.; Greenland, S.; Lash, T.L. Modern Epidemiology, 3rd ed.; Library of Congress Cataloging-in-Publication Data: Washington, DC, USA, 2012; pp. 71–83. [Google Scholar]
- Zou, G.Y. On the estimation of additive interaction by use of the four-by-two table and beyond. Am. J. Epidemiol. 2008, 168, 212–224. [Google Scholar] [CrossRef] [PubMed]
- UNICEF Data: Monitoring the situation of children and women: Finland. Available online: https://data.unicef.org/country/fin/ (accessed on 22 June 2020).
- Graafmans, W.C.; Richardus, J.H.; Borsboom, G.J.J.M.; Bakketeig, L.; Langhoff-Roos, J.; Bergsjo, P.; Macfarlane, A.; Vrloove-Vanhorick, S.P.; Mackenbach, J.P. Birth weight and perinatal mortality: A comparison of “optimal” birth weight in seven Western European countries. Epidemiology 2002, 13, 569–574. [Google Scholar] [CrossRef] [PubMed]
- Cândido da Silva, A.M.; Moi, G.P.; Mattos, I.E.; Hacon Sde, S. Low birth weight at term and the presence of fine particulate matter and carbon monoxide in the Brazilian Amazon: A population-based retrospective cohort study. BMC Pregnancy Childbirth 2014, 14, 309. [Google Scholar] [CrossRef] [Green Version]
- Yucra, S.; Tapia, V.; Steenland, K.; Naeher, L.P.; Gonzales, G.F. Maternal exposure to biomass smoke and carbon monoxide in relation to adverse pregnancy outcome in two high altitude cities of Peru. Environ. Res. 2014, 130, 29–33. [Google Scholar] [CrossRef] [Green Version]
- Lamichhane, D.K.; Leem, J.H.; Lee, J.Y.; Kim, H.C. A meta-analysis of exposure to particulate matter and adverse birth outcomes. Environ. Health Toxicol. 2015, 30, e2015011. [Google Scholar] [CrossRef] [PubMed]
- Panasevich, S.; Håberg, S.E.; Aamodt, G.; London, S.J.; Stigum, H.; Nystad, W.; Nafstad, P. Association between pregnancy exposure to air pollution and birth weight in selected areas of Norway. Arch. Public Health 2016, 74, 26. [Google Scholar] [CrossRef] [Green Version]
- Stieb, D.M.; Chen, L.; Hystad, P.; Beckerman, B.S.; Jerrett, M.; Tjepkema, M.; Crouse, D.L.; Omariba, D.W.; Peter, P.A.; Van Donkelaar, A.; et al. A national study of the association between traffic-related air pollution and adverse pregnancy outcomes in Canada, 1999–2008. Environ. Res. 2016, 148, 513–526. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Guo, Y.; Abramson, M.J.; Williams, G.; Li, S. Exposure to low concentrations of air pollutants and adverse birth outcomes in Brisbane, Australia, 2003–2013. Sci. Total Environ. 2018, 622–623, 721–726. [Google Scholar] [CrossRef]
- Uvuz, F.; Kilic, S.; Yilmaz, N.; Tuncay, G.; Cakar, E.; Yuksal, B.; Bilge, U. Relationship between preterm labor and thrombophilic gene polymorphism: A prospective sequential cohort study. Gynecol. Obstet. Invest. 2009, 68, 234–238. [Google Scholar] [CrossRef]
- Wu, H.; Zhu, P.; Geng, X.; Liu, Z.; Cui, L.; Gao, Z.; Jiang, B.; Yang, L. Genetic polymorphism of MTHFR C677T with preterm birth and low birth weight susceptibility: A meta-analysis. Arch. Gynecol. Obstet. 2017, 295, 1105–1118. [Google Scholar] [CrossRef] [PubMed]
- Perera, F.; Herbstman, J. Prenatal environmental exposures, epigenetics, and disease. Reprod. Toxicol. 2011, 31, 363–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maroziene, L.; Grazuleviciene, R. Maternal exposure to low-level air pollution and pregnancy outcomes: A population-based study. Environ. Health 2002, 1, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabacova, S.; Baird, D.D.; Balabaeva, L. Exposure to oxidized nitrogen: Lipid peroxidation and neonatal health risk. Arch. Environ Health 1998, 53, 214–221. [Google Scholar] [CrossRef]
- Perera, F.P.; Jedrychowski, W.; Rauh, V.; Whyatt, R.M. Molecular epidemiologic research on the effect of environmental pollutants on the fetus. Environ. Health Perspect. 1999, 107, 451–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salam, M.T.; Millstein, J.; Li, Y.F.; Lurmann, F.W.; Margolis, H.G.; Gilliland, F.D. Birth outcomes and prenatal exposure to ozone, carbon monoxide, and particulate matter: Results from the Children’s Health Study. Environ. Health Perspect. 2005, 113, 1638–1644. [Google Scholar] [CrossRef]
- Di Cera, E.; Doyle, M.L.; Morgan, M.S.; De Cristofaro, R.; Landolfi, R.; Bizzi, B.; Castagnola, M.; Gill, S.J. Carbon monoxide and oxygen binding to human hemoglobin F0. Biochemistry 1989, 28, 2631–2638. [Google Scholar] [CrossRef] [PubMed]
- Kannan, S.; Misra, D.P.; Dvonch, J.T.; Krishnakumar, A. Exposures to airborne particulate matter and adverse perinatal outcomes: A biologically plausible mechanistic framework for exploring potential effect modification by nutrition. Environ. Health Perspect. 2006, 114, 1636–1642. [Google Scholar] [CrossRef]
- Liu, S.; Krewski, D.; Shi, Y.; Chen, Y.; Burnett, R.T. Association between gaseous ambient air pollutants and adverse pregnancy outcomes in Vancouver, Canada. Environ. Health Perspect. 2003, 111, 1773–1778. [Google Scholar] [CrossRef]
- Zhang, T.; Zheng, X.; Wang, X.; Zhao, H.; Wang, T.; Zhang, H.; Li, W.; Shen, H.; Yu, L. Maternal Exposure to PM2.5 during Pregnancy Induces Impaired Development of Cerebral Cortex in Mice Offspring. Int. J. Mol. Sci. 2018, 19, 257. [Google Scholar] [CrossRef] [Green Version]
- Che, Z.; Liu, Y.; Chen, Y.; Cao, J.; Liang, C.; Wang, L.; Ding, R. The apoptotic pathways effect of fine particulate from cooking oil fumes in primary fetal alveolar type II epithelial cells. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2014, 761, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Wang, Y.; Li, L.; Zhou, W.; Tian, D.; Lu, C.; Yu, S.; Zhao, J.; Peng, S. PM 2.5 induces embryonic growth retardation: Potential involvement of ROS-MAPK s-apoptosis and G0/G1 arrest pathways. Environ. Toxicol. 2015, 31, 2028–2044. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Low Birth Weight <3000 g n (%) | Non-Low Birth Weight n (%) | Total n (%) |
---|---|---|---|
Total | 344 (13.40) | 2216 (86.56) | 2568 (100.00) |
Mean birth weight (Mean ± SD) | 2742.02 ± 228.59 | 3675.24 ± 406.62 | 3523.41 ± 559.77 |
Gender | |||
boy | 157 (45.64) | 1149 (51.85) | 1311 (51.05) |
girl | 187 (54.36) | 1067 (48.15) | 1257 (48.95) |
Maternal age at delivery (years) 1 | |||
<25 | 59 (17.25) | 308 (14.03) | 370 (14.53) |
25–30 | 115 (33.63) | 845 (38.48) | 960 (37.71) |
>30 | 168 (49.12) | 1043 (47.50) | 1216 (47.76) |
Family socioeconomic status 2,3 | |||
high | 76 (22.22) | 520 (23.57) | 597 (23.36) |
low or medium | 266 (77.78) | 1686 (76.43) | 1959 (76.64) |
Single parent or guardian | |||
yes | 35 (10.17) | 147 (6.63) | 183 (7.13) |
no | 309 (89.83) | 2069 (93.37) | 2385 (92.87) |
Maternal smoking in pregnancy | |||
yes | 77 (22.38) | 287 (12.97) | 364 (14.17) |
no | 267 (77.62) | 1925 (87.03) | 2204 (85.83) |
Environmental tobacco smoke exposure of the pregnant mother 4 | |||
yes | 17 (6.91) | 84 (4.88) | 101 (5.11) |
no | 229 (93.09) | 1639 (95.12) | 1874 (94.89) |
Pollutants | Mean ± SD | Minimum | 25th Percentile | Median | 75th Percentile | IQR | Maximum |
---|---|---|---|---|---|---|---|
PM2.5 (µg/m3) | 19.62 ± 4.50 | 3.01 | 16.93 | 19.53 | 22.10 | 5.17 | 38.48 |
PM10 (µg/m3) | 21.35 ± 5.12 | 3.17 | 18.47 | 21.15 | 24.06 | 5.59 | 43.78 |
CO (ppb) | 295.09 ± 51.50 | 119.89 | 264.02 | 295.97 | 329.74 | 65.72 | 482.45 |
NO2 (ppb) | 4.31 ± 1.23 | 0.21 | 3.63 | 4.41 | 5.07 | 1.44 | 8.73 |
SO2 (ppb) | 3.94 ± 1.95 | 0.19 | 2.76 | 3.75 | 4.71 | 1.95 | 15.88 |
O3 (ppb) | 23.79 ± 2.80 | 11.20 | 21.64 | 23.93 | 26.00 | 4.36 | 36.93 |
Temperature (°C) | 4.82 ± 2.84 | −6.58 | 2.59 | 4.94 | 7.28 | 4.69 | 15.50 |
Pollutants | PM2.5 | PM10 | CO | NO2 | SO2 | O3 |
---|---|---|---|---|---|---|
PM2.5 | 1.00000 | 0.99685 | 0.89702 | 0.91916 | 0.90082 | −0.28581 |
PM10 | 1.00000 | 0.90623 | 0.93464 | 0.92367 | −0.27277 | |
CO | 1.00000 | 0.97227 | 0.84810 | −0.26151 | ||
NO2 | 1.00000 | 0.89592 | −0.30946 | |||
SO2 | 1.00000 | −0.36899 | ||||
O3 | 1.00000 |
Single and Multipollutant Models | Low Birth Weight <3000 g | Spring–Summer (Warm Season) | Autumn–Winter (Cold Season) | |||
---|---|---|---|---|---|---|
Crude RR (95% CI) | Adjusted RR (95% CI) 1 | Crude RR (95% CI) | Adjusted RR (95% CI) 2 | Crude RR (95% CI) | Adjusted RR (95% CI) 2 | |
PM2.5(Q4 ≥ 22.1 µg/m3) 3 | 0.90 (0.70–1.15) | 0.89 (0.69–1.16) | 1.06 (0.77–1.45) | 1.09 (0.79–1.50) | 0.67 (0.43–1.04) | 0.64 (0.40–1.01) |
(PM2.5 + O3) | 0.90 (0.70–1.17) | 0.90 (0.69–1.16) | 1.11 (0.81–1.54) | 1.14 (0.82–1.58) | 0.64 (0.40–1.01) | 0.60 (0.38–0.96) |
(PM2.5 + SO2) | 0.80 (0.55–1.17) | 0.79 (0.54–1.16) | 1.21 (0.72–2.04) | 1.19 (0.70–2.02) | 0.51 (0.29–0.90) | 0.50 (0.28–0.89) |
PM10(Q4 ≥ 24.1 µg/m3) 3 | 0.86 (0.67–1.12) | 0.86 (0.66–1.11) | 1.01 (0.73–1.39) | 1.03 (0.74–1.43) | 0.67 (0.43–1.03) | 0.64 (0.41–1.00) |
(PM10 + CO) | 0.66 (0.46–0.93) | 0.66 (0.47–0.94) | 0.70 (0.43–1.14) | 0.72 (0.44–1.16) | 0.57 (0.33–0.96) | 0.55 (0.32–0.95) |
(PM10 + NO2) | 0.71 (0.48–1.04) | 0.70 (0.89–1.89) | 0.97 (0.55–1.69) | 0.98 (0.56–1.72) | 0.51 (0.29–0.89) | 0.49 (0.88–2.44) |
NO2 (Q4 ≥ 5.1 ppb) 3 | 1.00 (0.79–1.29) | 1.00 (0.78–1.28) | 1.02 (0.74–1.41) | 1.05 (0.76–1.45) | 0.98 (0.66–1.45) | 0.94 (0.63–1.40) |
(NO2 + PM10) | 1.30 (0.90–1.88) | 1.30 (0.89–1.89) | 1.05 (0.60–1.83) | 1.07 (0.61–1.87) | 1.49 (0.90–2.45) | 1.46 (0.88–2.44) |
(NO2 + SO2) | 1.05 (0.70–1.59) | 1.03 (0.67–1.58) | 1.13 (0.64– 2.01) | 1.08 (0.59–1.97) | 0.97 (0.53–1.77) | 0.95 (0.52–1.76) |
CO (Q4 ≥ 329.7 ppb) 3 | 1.11 (0.87–1.41) | 1.11 (0.86–1.41) | 1.24 (0.90–1.69) | 1.27 (0.92–1.73) | 0.95 (0.64–1.40) | 0.91 (0.61–1.35) |
(CO + O3) | 1.12 (0.88–1.43) | 1.11 (0.80–1.40) | 1.29 (1.17– 3.13) | 1.31 (0.95–1.80) | 0.93 (0.63–1.38) | 0.89 (0.60–1.33) |
(CO + PM10) | 1.47 (1.06– 2.03) | 1.44 (1.04– 2.00) | 1.60 (1.01– 2.54) | 1.61 (1.01–2.55) | 1.30 (0.81–2.08) | 1.26 (0.78–2.03) |
(CO + SO2) | 1.28 (0.90–1.83) | 1.25 (0.88–1.78) | 1.78 (1.09– 2.90) | 1.72 (1.06– 2.81) | 0.92 (0.55–1.55) | 0.89 (0.53–1.49) |
SO2 (Q4 ≥ 4.7 ppb) 3 | 0.99 (0.77–1.26) | 0.99 (0.77–1.27) | 0.98 (0.71–1.36) | 1.03 (0.74–1.43) | 0.99 (0.67–1.46) | 0.96 (0.64–1.43) |
(SO2 + O3) | 1.00 (0.77–1.28) | 1.00 (0.77–1.29) | 1.03 (0.74–1.44) | 1.08 (0.78–1.51) | 0.95 (0.64–1.43) | 0.91 (0.61–1.38) |
(SO2 + PM2.5) | 1.16 (0.80–1.67) | 1.18 (0.81–1.72) | 0.84 (0.49–1.43) | 0.90 (0.52–1.56) | 1.47 (0.90–2.40) | 1.46 (0.89–2.41) |
(SO2 + CO) | 0.82 (0.57–1.18) | 0.85 (0.59–1.22) | 0.62 (0.37–1.03) | 0.67 (0.40–1.12) | 1.04 (0.62–1.75) | 1.05 (0.62–1.76) |
(SO2 + NO2) | 0.95 (0.63–1.44) | 0.98 (0.64–1.50) | 0.89 (0.50–1.58) | 0.97 (0.53–1.78) | 1.01 (0.56–1.84) | 1.00 (0.54–1.84) |
O3 (Q4 ≥ 26 ppb) 3 | 1.04 (0.82–1.33) | 1.05 (0.79–1.38) | 1.82 (1.11– 2.96) | 1.80 (1.10– 2.94) | 0.89 (0.65–1.22) | 0.88 (0.64–1.20) |
(O3 + PM2.5) | 1.02 (0.80–1.31) | 1.03 (0.78–1.36) | 1.86 (1.14– 3.06) | 1.85 (1.12– 3.04) | 0.84 (0.61–1.15) | 0.82 (0.59–1.12) |
(O3 + CO) | 1.06 (0.83–1.36) | 1.06 (0.80–1.40) | 1.91 (1.17– 3.13) | 1.88 (1.15– 3.09) | 0.89 (0.65–1.21) | 0.87 (0.63–1.19) |
(O3 + SO2) | 1.04 (0.81–1.34) | 1.05 (0.79–1.38) | 1.83 (1.12–3.00) | 1.83 (1.11–3.02) | 0.88 (0.64–1.22) | 0.86 (0.62–1.19) |
CO Entire Pregnancy | O3 Entire Pregnancy | n/N | % of LBW <3000 g | Crude RR (95% CI) | Adjusted RR (95% CI) 1 | ERR (95% CI) 1 | RERI (95% CI) 1 |
---|---|---|---|---|---|---|---|
Low (<Q4) | Low (<Q4) | 183/1351 | 13.55 | 1 | 1 | ||
High (>Q4) | Low (<Q4) | 69/545 | 12.66 | 0.93 (0.71–1.23) | 0.93 (0.70–1.23) | −0.07 (−0.30–0.23) | |
Low (<Q4) | High (>Q4) | 63/532 | 11.84 | 0.87 (0.66,1.16) | 0.87 (0.64,1.19) | −0.13 (−0.36–0.19) | |
High (>Q4) | High (>Q4) | 23/89 | 25.84 | 1.91 (1.24,2.94) | 1.88 (1.20,2.95) | 0.88 (0.20– 1.95) | 1.08 (0.27– 4.94) |
PM2.5 Entire Pregnancy | O3 Entire Pregnancy | ||||||
Low (<Q4) | Low (<Q4) | 187/1320 | 14.17 | 1 | 1 | ||
High (>Q4) | Low (<Q4) | 65/568 | 11.44 | 0.81 (0.61–1.07) | 0.81 (0.61–1.08) | −0.19 (−0.39–0.08) | |
Low (<Q4) | High (>Q4) | 73/566 | 12.90 | 0.91 (0.69–1.19) | 0.91 (0.68–1.22) | −0.09 (−0.32–0.22) | |
High (>Q4) | High (>Q4) | 13/63 | 20.63 | 1.46 (0.83– 2.56) | 1.44 (0.81–2.56) | 0.44 (−0.19–1.56) | 0.72 (−0.07,3.60) |
CO Entire Pregnancy | O3 Entire Pregnancy | n/N | % of LBW <3000 g | Adjusted RR (95% CI) 1 | ERR (95% CI) 1 | RERI (95% CI) 1 |
---|---|---|---|---|---|---|
Low (<Q4) | Low (<Q4) | 102/822 | 12.41 | 1 | 1 | |
High (>Q4) | Low (<Q4) | 53/382 | 13.87 | 1.18 (0.84–1.65) | 0.18 (0.16–0.65) | |
Low (<Q4) | High (>Q4) | 10/67 | 14.93 | 1.23 (0.63–2.36) | 0.23 (0.37–1.36) | |
High (>Q4) | High (>Q4) | 8/10 | 80.00 | 5.38 (2.50–11.57) | 4.38 (1.50–10.57) | 3.97 (2.17,25.85) |
PM2.5 Entire Pregnancy | O3 Entire Pregnancy | |||||
Low (<Q4) | Low (<Q4) | 104/810 | 12.84 | 1 | 1 | |
High (>Q4) | Low (<Q4) | 51/392 | 13.01 | 1.06 (0.76–1.49) | 0.06 (−0.24–0.49) | |
Low (<Q4) | High (>Q4) | 13/72 | 18.06 | 1.44 (0.80–2.58) | 0.44 (−0.20–1.58) | |
High (>Q4) | High (>Q4) | 5/7 | 71.43 | 4.30 (0.66–10.16) | 3.30(1.50–10.57) | 2.80 (1.36–19.88) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balogun, H.A.; Rantala, A.K.; Antikainen, H.; Siddika, N.; Amegah, A.K.; Ryti, N.R.I.; Kukkonen, J.; Sofiev, M.; Jaakkola, M.S.; Jaakkola, J.J.K. Effects of Air Pollution on the Risk of Low Birth Weight in a Cold Climate. Appl. Sci. 2020, 10, 6399. https://doi.org/10.3390/app10186399
Balogun HA, Rantala AK, Antikainen H, Siddika N, Amegah AK, Ryti NRI, Kukkonen J, Sofiev M, Jaakkola MS, Jaakkola JJK. Effects of Air Pollution on the Risk of Low Birth Weight in a Cold Climate. Applied Sciences. 2020; 10(18):6399. https://doi.org/10.3390/app10186399
Chicago/Turabian StyleBalogun, Hamudat A., Aino K. Rantala, Harri Antikainen, Nazeeba Siddika, A. Kofi Amegah, Niilo R. I. Ryti, Jaakko Kukkonen, Mikhail Sofiev, Maritta S. Jaakkola, and Jouni J. K. Jaakkola. 2020. "Effects of Air Pollution on the Risk of Low Birth Weight in a Cold Climate" Applied Sciences 10, no. 18: 6399. https://doi.org/10.3390/app10186399
APA StyleBalogun, H. A., Rantala, A. K., Antikainen, H., Siddika, N., Amegah, A. K., Ryti, N. R. I., Kukkonen, J., Sofiev, M., Jaakkola, M. S., & Jaakkola, J. J. K. (2020). Effects of Air Pollution on the Risk of Low Birth Weight in a Cold Climate. Applied Sciences, 10(18), 6399. https://doi.org/10.3390/app10186399