A Preliminary Study on the Adaptive SNR Threshold Method for Depth of Penetration Measurements in Diagnostic Ultrasounds
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
- The non-linear curve fitting f(z) was derived, from SNR(z), by the iterative computation of the coefficients β, χ, γ, η according to the sigmoidal function:
- The first order derivative f ’(z) was calculated and its minimum value zmin was used to estimate Smax as follows:
3. Monte Carlo Simulation
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lu, Z.F.; Hangiandreou, N.J.; Carson, P. Clinical ultrasonography physics: state of practice. In Clinical Imaging Physics: Current and Emerging Practice, 1st ed.; Samei, E., Pfeiffer, D.E., Eds.; Wiley Blackwell: Hoboken, NJ, USA, 2020; pp. 261–286. [Google Scholar]
- Goodsitt, M.M.; Carson, P.L.; Witt, S.; Hykes, D.L.; Kofler, J.M., Jr. Real-time B-mode ultrasound quality control test procedures, Report of AAPM Ultrasound Task Group No. 1. Med. Phys. 1998, 25, 1385–1406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scorza, A.; Orsini, F.; De Marchis, C.; Caramia, C.; Sciuto, S.A.; Galo, J. A Comparative study on the influence of phantoms and test objects on quality control measurements in B-mode ultrasound systems: Preliminary results. In Proceedings of the 2018 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Rome, Italy, 11–13 June 2018. [Google Scholar] [CrossRef]
- Gibson, N.M.; Dudley, N.J.; Griffith, K. A computerised quality control testing system for B-mode ultrasound. Ultrasound Med. Biol. 2001, 27, 1697–1711. [Google Scholar] [CrossRef]
- Thijssen, J.M.; Weijers, G.; de Korte, C.L. Objective performance testing and quality assurance of medical ultrasound equipment. Ultrasound Med. Biol. 2007, 33, 460–471. [Google Scholar] [CrossRef] [PubMed]
- Hangiandreou, N.J.; Stekel, S.F.; Tradup, D.J.; Gorny, K.R.; King, D.M. Four-year experience with a clinical ultrasound quality control program. Ultrasound Med. Biol. 2011, 37, 1350–1357. [Google Scholar] [CrossRef] [PubMed]
- Tradup, D.J.; Hangiandreou, N.J.; Taubel, J.P. Comparison of ultrasound quality assurance phantom measurements from matched and mixed scanner-transducer combinations. J. Appl. Clin. Med. Phys. 2003, 4, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Goldman, L.W.; Fowlkes, B.J. Medical CT & Ultrasound: Current Technology & Applications—AAPM Summer School 1995; American Institute of Physics: College Park, MD, USA, 1995. [Google Scholar]
- Sassaroli, E.; Crake, C.; Scorza, A.; Kim, D.-S.; Park, M.-A. Image quality evaluation of ultrasound imaging systems: Advanced B-modes. J. Appl. Clin. Med. Phys. 2019, 20, 115–124. [Google Scholar] [CrossRef] [PubMed]
- American institute of Ultrasound in Medicine & AIUM Standards Committee. Standard Methods for Measuring Performance of Pulse-Echo Ultrasound Equipment; The Institute: Rockville, MD, USA, 1991. [Google Scholar]
- AIUM Technical Standards Committee, Quality Assurance Subcommittee. AIUM Quality Assurance Manual for Gray-Scale Ultrasound Scanners; American institute of Ultrasound in Medicine: Laurel, MD, USA, 1995. [Google Scholar]
- Browne, J.E.; Watson, A.J.; Muir, C. An Investigation of the Relationship between In-vitro and In-vivo Ultrasound Image Quality Parameters. Ultrasound 2004, 12, 202–210. [Google Scholar] [CrossRef] [Green Version]
- Cozzolino, P.; Stramare, R.; Udilano, A.; Castoro, M.; Scagliori, E.; Beltrame, V.; Rubaltelli, L. Quality control of ultrasound transducers: Analysis of evaluation parameters and results of a survey of 116 transducers in a single hospital. Radiol. Med. 2010, 115, 668–677. [Google Scholar] [CrossRef] [PubMed]
- Fabiszewska, E.; Pasicz, K.; Grabska, I.; Skrzyński, W.; Ślusarczyk-Kacprzyk, W.; Bulski, W. Evaluation of Imaging Parameters of Ultrasound Scanners: Baseline for Future Testing. Pol. J. Radiol. 2017, 82, 773–782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mannila, V.; Sipilä, O. Phantom-based quality assurance measurements in B-mode ultrasound. Acta Radiol. Short Rep. 2013, 2, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Dudley, N.J.; Gibson, N.M. Early experience with automated B-mode quality assurance tests. Ultrasound 2014, 22, 15–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ultrasonics—Pulse-Echo Scanners—Part 2: Measurement of Maximum Depth of Penetration and Local Dynamic Range, 1st ed.International Standard IEC 61391-2: Geneva, Switzerland, 2010.
- Scorza, A.; Lupi, G.; Sciuto, S.A.; Bini, F.; Marinozzi, F. A novel approach to a phantom based method for maximum depth of penetration measurement in diagnostic ultrasound: A preliminary study. In Proceedings of the 2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Turin, Italy, 7–9 May 2015. [Google Scholar] [CrossRef]
- Gorny, K.R.; Tradup, D.J.; Hangiandreou, N.J. Implementation and validation of three automated methods for measuring ultrasound maximum depth of penetration: Application to ultrasound quality control. Med. Phys. 2005, 32, 2615–2628. [Google Scholar] [CrossRef] [PubMed]
- Sassaroli, E.; Scorza, A.; Crake, C.; Sciuto, S.A.; Park, M.-A. Breast Ultrasound Technology and Performance Evaluation of Ultrasound Equipment: B-Mode. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2017, 64, 192–205. [Google Scholar] [CrossRef] [PubMed]
- Kollmann, C.; deKorte, C.; Dudley, N.J.; Gritzmann, N.; Martin, K.; Evans, D.H. Guideline for Technical Quality Assurance (TQA) of ultrasound devices (B-mode)—Version 1.0 (July 2012): EFSUMB Technical Quality Assurance group—US-TQA/B. Ultraschall Med. 2012, 33, 544–599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiori, G.; Fuiano, F.; Vurchio, F.; Scorza, A.; Schmid, M.; Conforto, S.; Sciuto, S.A. A preliminary study on a novel method for depth of penetration measurement in ultrasound quality assessment. In Proceedings of the 24th IMEKO TC4 International Symposium & 22nd International Workshop on ADC Modelling and Testing, Palermo, Italy, 14–16 September 2020. [Google Scholar]
- Kimpe, T.; Tuytschaever, T. Increasing the number of gray shades in medical display systems—How much is enough? J. Digit. Imaging 2007, 20, 422–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez, R.C.; Woods, R.E. Digital Image Processing, 3rd ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2002; pp. 35–98. [Google Scholar]
- Gille, J.; Arend, L.; Larimer, J.O. Display characterization by eye: Contrast ratio and discrimination throughout the grayscale. In Proceedings of the SPIE 5292, Human Vision and Electronic Imaging IX, San Jose, CA, USA, 7 June 2004. [Google Scholar] [CrossRef] [Green Version]
- CIRS Tissue Simulation & Phantom Technology. Multi-Purpose Multi-Tissue Ultrasound Phantom—Model 040GSE. Available online: http://www.cirsinc.com/wp-content/uploads/2020/03/040GSE-DS-032320-1.pdf (accessed on 10 September 2020).
- Taylor, J.R. An. Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements, 2nd ed.; University Science Books: Sausalito, CA, USA, 1996; pp. 13–44. [Google Scholar]
- Scorza, A.; Conforto, S.; D’Anna, C.; Sciuto, S.A. A Comparative Study of the Influence of Probe Placement on Quality Assurance Measurements in B-mode Ultrasound by Means of Ultrasound Phantoms. Open Biomed. Eng. J. 2015, 9, 164–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiori, G.; Fuiano, F.; Scorza, A.; Schmid, M.; Conforto, S.; Sciuto, S.A. ECG waveforms reconstruction based on equivalent time sampling. In Proceedings of the 2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Bari, Italy, 1–3 June 2020. [Google Scholar] [CrossRef]
- Orsini, F.; Fuiano, F.; Fiori, G.; Scorza, A.; Sciuto, S.A. Temperature influence on viscosity measurements in a rheometer prototype for medical applications: A case study. In Proceedings of the 2019 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Istanbul, Turkey, 26–28 June 2019. [Google Scholar] [CrossRef]
- Orsini, F.; Vurchio, F.; Scorza, A.; Crescenzi, R.; Sciuto, S.A. An Image Analysis Approach to Microgrippers Displacement Measurement and Testing. Actuators 2018, 7, 64. [Google Scholar] [CrossRef] [Green Version]
- Vurchio, F.; Orsini, F.; Scorza, A.; Fuiano, F.; Sciuto, S.A. A preliminary study on a novel automatic method for angular displacement measurements in microgripper for biomedical applications. In Proceedings of the 2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Bari, Italy, 1–3 June 2020. [Google Scholar] [CrossRef]
- Fiori, G.; Fuiano, F.; Scorza, A.; Galo, J.; Conforto, S.; Sciuto, S.A. Lowest detectable signal in medical PW doppler quality control by means of a commercial flow phantom: A case study. In Proceedings of the 24th IMEKO TC4 International Symposium & 22nd International Workshop on ADC Modelling and Testing, Palermo, Italy, 14–16 September 2020. [Google Scholar]
Parameter | Characteristics |
---|---|
US phantom model | CIRS 040GSE |
Scanning material | Zerdine® tissue-mimicking gel |
Sound speed (m⋅s−1) | 1540 |
Attenuation (dB⋅cm−1⋅MHz−1) | 0.70 |
Dimensions | 17.8 × 12.7 × 20.3 cm |
Weight | 4752 g |
Parameter | Settings | |
---|---|---|
Set 1 | Set 2 | |
Nominal frequency (MHz) | L: 5-10 C: 2-4 V: 2-3 | |
Dynamic range (dB) | Maximum | Medium |
Field of view (mm) | L: 70 (741) C: 180 (1841) V: 180 (1911) | |
Focus depth (mm) | L: 20–40 C: 80–120 V: 80–100 | |
Overall gain (dB) | Medium | |
STC (dB) | Slide switches aligned in central position2 | |
Transmitted power | Maximum | Medium/Maximum |
Zoom | No | |
Post-processing | Linear | |
Image format | DICOM |
US System | Probe | Symbol | Distribution | Mean Value | Standard Deviation | |
---|---|---|---|---|---|---|
All | All | l | Uniform | 30 px | 1 px | |
s | Uniform | 0 px | 2 px | |||
A | L | set 1 | thSNR | Uniform | 1.91 | 0.04 |
set 2 | Triangular | 2.13 | 0.01 | |||
C | set 1 | Uniform | 1.52 | 0.04 | ||
set 2 | Uniform | 0.90 | 0.04 | |||
V | set 1 | Triangular | 1.10 | 0.02 | ||
set 2 | Triangular | 1.63 | 0.03 | |||
B | L | set 1 | Triangular | 1.38 | 0.03 | |
set 2 | Uniform | 1.86 | 0.06 | |||
C | set 1 | Triangular | 0.49 | 0.04 | ||
set 2 | Triangular | 0.48 | 0.02 | |||
V | set 1 | Triangular | 1.76 | 0.06 | ||
set 2 | Triangular | 1.73 | 0.04 |
US System | Probe | Symbol | Distribution | Mean Value | Standard Deviation | |
---|---|---|---|---|---|---|
All | All | l | Uniform | 30 px | 1 px | |
s | Uniform | 0 px | 2 px | |||
C | L | set 1 | thSNR | Triangular | 3.7 | 0.1 |
set 2 | Triangular | 12.50 | 0.01 | |||
C | set 1 | Triangular | 2.26 | 0.02 | ||
set 2 | Triangular | 2.78 | 0.02 | |||
V | set 1 | Triangular | 1.94 | 0.04 | ||
set 2 | Triangular | 2.18 | 0.04 | |||
D | L | set 1 | Uniform | 0.54 | 0.02 | |
set 2 | Triangular | 0.74 | 0.01 | |||
C | set 1 | Triangular | 0.46 | 0.01 | ||
set 2 | Triangular | 1.76 | 0.01 | |||
V | set 1 | Uniform | 1.55 | 0.08 | ||
set 2 | Triangular | 2.88 | 0.01 |
US System | Probe | AdSTM (mm) | TTM [18] (mm) | Observers (mm) | ||||
---|---|---|---|---|---|---|---|---|
μ ± σ | %FOV | μ ± σ | %FOV | μ ± σ | %FOV | |||
A | L | set 1 | 36 ± 3 | 4.3 | 35 ± 2 | 2.9 | 39 ± 3 | 4.3 |
set 2 | 38 ± 2 | 2.9 | 38 ± 3 | 4.3 | 37 ± 3 | 4.3 | ||
C | set 1 | 152 ± 3 | 1.7 | 154 ± 6 | 3.3 | 138 ± 12 | 6.7 | |
set 2 | 141 ± 2 | 1.1 | 124 ± 2 | 1.1 | 128 ± 6 | 3.3 | ||
V | set 1 | 101 ± 5 | 2.8 | 105 ± 4 | 2.2 | 107 ± 10 | 5.6 | |
set 2 | 106 ± 3 | 1.7 | 86 ± 2 | 1.1 | 97 ± 7 | 3.9 | ||
B | L | set 1 | 43 ± 2 | 2.9 | 40 ± 3 | 4.3 | 40 ± 3 | 4.3 |
set 2 | 42 ± 2 | 2.9 | 40 ± 2 | 2.9 | 40 ± 2 | 2.9 | ||
C | set 1 | 99 ± 2 | 1.1 | 84 ± 3 | 1.7 | 83 ± 6 | 3.3 | |
set 2 | 89 ± 2 | 1.1 | 78 ± 3 | 1.7 | 77 ± 7 | 3.9 | ||
V | set 1 | 120 ± 2 | 1.1 | 113 ± 5 | 2.8 | 109 ± 8 | 4.4 | |
set 2 | 102 ± 2 | 1.1 | 100 ± 4 | 2.2 | 98 ± 10 | 5.6 | ||
C | L | set 1 | 46 ± 2 | 2.9 | 39 ± 2 | 2.9 | 41 ± 4 | 5.7 |
set 2 | 48 ± 2 | 2.9 | 47 ± 2 | 2.9 | 48 ± 3 | 4.3 | ||
C | set 1 | 151 ± 6 | 3.3 | 142 ± 5 | 2.8 | 143 ± 8 | 4.4 | |
set 2 | 140 ± 2 | 1.1 | 142 ± 6 | 3.3 | 135 ± 5 | 2.8 | ||
V | set 1 | 124 ± 2 | 1.1 | 99 ± 2 | 1.1 | 118 ± 14 | 7.8 | |
set 2 | 118 ± 9 | 5.0 | 120 ± 5 | 2.8 | 112 ± 13 | 7.2 | ||
D | L | set 1 | 43 ± 2 | 2.7 | 28 ± 2 | 2.7 | 37 ± 4 | 5.4 |
set 2 | 40 ± 2 | 2.7 | 28 ± 2 | 2.7 | 35 ± 2 | 2.7 | ||
C | set 1 | 107 ± 2 | 1.1 | – 1 | – 1 | 81 ± 8 | 4.3 | |
set 2 | 104 ± 2 | 1.1 | 61 ± 3 | 1.6 | 96 ± 6 | 3.3 | ||
V | set 1 | 138 ± 6 | 3.1 | 78 ± 3 | 1.6 | 130 ± 7 | 3.7 | |
set 2 | 141 ± 2 | 1.0 | 86 ± 2 | 1.0 | 138 ± 7 | 3.7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fiori, G.; Fuiano, F.; Scorza, A.; Galo, J.; Conforto, S.; Sciuto, S.A. A Preliminary Study on the Adaptive SNR Threshold Method for Depth of Penetration Measurements in Diagnostic Ultrasounds. Appl. Sci. 2020, 10, 6533. https://doi.org/10.3390/app10186533
Fiori G, Fuiano F, Scorza A, Galo J, Conforto S, Sciuto SA. A Preliminary Study on the Adaptive SNR Threshold Method for Depth of Penetration Measurements in Diagnostic Ultrasounds. Applied Sciences. 2020; 10(18):6533. https://doi.org/10.3390/app10186533
Chicago/Turabian StyleFiori, Giorgia, Fabio Fuiano, Andrea Scorza, Jan Galo, Silvia Conforto, and Salvatore Andrea Sciuto. 2020. "A Preliminary Study on the Adaptive SNR Threshold Method for Depth of Penetration Measurements in Diagnostic Ultrasounds" Applied Sciences 10, no. 18: 6533. https://doi.org/10.3390/app10186533