A New Coordinate System for Constructing Spherical Grid Systems
Abstract
:1. Introduction
- The construction process is very simple;
- Since our grid system has a slower growth rate between levels, it is more flexible and can be used for many applications;
- The grid cells have a low distortion in shape and area;
- The grid cells exhaustively cover the globe without overlapping;
- The grid system has a congruent hierarchical structure;
- The grid system has a simple relationship with conventional coordinates.
2. Related Work
2.1. A Brief Review of the Geodesic DGGS
- A DGGS is congruent if and only if
- A DGGS is aligned if and only if
- A base regular polyhedron;
- Polyhedron orientation;
- Subdivision scheme;
- Transformation;
- Choice of cell points.
2.1.1. Base Regular Polyhedron
2.1.2. Polyhedron Orientation
2.1.3. Subdivision Scheme
2.1.4. Transformation
2.1.5. Choice of Cell Points
2.2. Previous Work
3. Spherical Area Coordinates (SACs)
3.1. Planar Area Coordinates
- ;
- ;
- .
3.2. Local SACs
3.2.1. Definition of SACs on the Spherical Triangle
- 1.
- ;
- 2.
- ;
- 3.
- ,
3.2.2. Transformation Laws between SACs and Cartesian Coordinates
4. The Global SAC and Grid Systems
4.1. The Tetrahedron Version of the Global Grid System
4.1.1. The Tetrahedron Version of SACs
4.1.2. The Tetrahedron Version of the Global Grid System
4.2. The Octahedron Version of the Global Grid System
4.3. The Icosahedron Version of the Global Grid System
4.4. Hexagonal Grid System
5. Results
5.1. DGGS Evaluation Criteria
- The grid cells complete tiling the globe without overlapping in any resolution;
- The grid cells at one resolution have equal areas;
- The grid cells have the same topology;
- The grid cells have the same shape;
- The grid system has a simple relationship with the latitude and longitude graticule;
- The grid system contains grids of any defined spatial resolution;
- The grid cells are compact.
5.2. Performance Analysis
5.3. Measures of Performance
6. Discussion
7. Conclusions and Further Work
Author Contributions
Funding
Conflicts of Interest
Abbreviations
3D | Three Dimensional |
BRDF | Bidirectional Reflectance Distribution Function |
DGGS | Discrete Global Grid System |
ERBE | Earth Radiation Budget Experiment |
GIS | Geographical Information System |
NGDC | National Geophysical Data Center |
SAC | Spherical Area Coordinate |
SACS | Spherical Area Coordinate System |
ZSC | Zone Standardized Compactness |
CAGD | Computer Aided Geometric Design |
References
- Snyder, J.P. An equal-area map projection for polyhedral globes. Cartographica 1992, 29, 10–21. [Google Scholar] [CrossRef]
- Goodchild, M.F. A Hierarchical spatial data structure for global geographic information systems. CVGIP Gr. Models Image Process. 1992, 54, 31–44. [Google Scholar] [CrossRef] [Green Version]
- Gray, R.W. Exact transformation equations for Fuller’s world map. Cartogr. Geogr. Inf. Syst. 1994, 21, 243–246. [Google Scholar] [CrossRef]
- Brooks, D.R. Grid Systems for Earth Radiation Budget Experiment Applications; Technical Report 83233; NASA-LRC: Hampton, VA, USA, 1981.
- Hastings, D.; Dunbar, P. Development and assessment of the global one-km base elevation digital elevation model (GLOBE). ISPRS Arch. 1998, 32, 218–221. [Google Scholar]
- Sahr, K.; White, D.; Kimerling, A. Geodesic discrete global grid systems. Cartogr. Geogr. Inf. Sci. 2003, 30, 121–134. [Google Scholar] [CrossRef] [Green Version]
- Fuller, R.B. Synergetics; MacMillan: New York, NY, USA, 1975. [Google Scholar]
- White, D.; Kimerling, A.J.; Sahr, K.; Song, L. Comparing area and shape distortion on polyhedral-based recursive partitions of the sphere. INT. J. Geograp. Inf. Sci. 1998, 12, 805–827. [Google Scholar] [CrossRef]
- Song, L.; Kimerling, A.J.; Sahr, K. Developing and equal area global grid by small circle subdivision. In Descrete Global Grids a Web Book; GoodChild, M.F., Kimerling, A.J., Eds.; 2002; Available online: http://www.geo.upm.es/postgrado/CarlosLopez/materiales/cursos/www.ncgia.ucsb.edu/globalgrids-book/song-kimmerling-sahr/ (accessed on 10 January 2020).
- Ronchi, C.; Iacono, R.; Paolucci, P.S. The ’Cubed Sphere’: A new method for the solution of partial differential equations in spherical geometry. J. Comput. Phys. 1996, 124, 93–114. [Google Scholar] [CrossRef]
- Simons, F.J.; Loris, I.; Nolet, G.; Daubechies, I.C.; Voronin, S.; Judd, J.S.; Vetter, P.A.; Charlety, J.; Vonesch, C. Solving or resolving global tomographic models with spherical wavelets, and the scale and sparsity of seismic heterogeneity. Geophys. J. Int. 2011, 187, 969–988. [Google Scholar] [CrossRef]
- Wongwathanarat, A.; Hammer, N.J.; Müller, E. An axis-free overset grid in spherical polar coordinates for simulating 3D self-gravitating flows. Astron. Astrophys. 2010, 514, A48. [Google Scholar] [CrossRef] [Green Version]
- Schröder, P.; Sweldens, W. Spherical wavelets: Efficiently representing functions on the sphere. In Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’95); ACM: New York, NY, USA, 1995; pp. 161–172. [Google Scholar]
- Schröder, P.; Sweldens, W. Spherical Wavelets: Texture Processing; Technical Report 1995:4; Industrial Mathematics Initiative, Department of Mathematics, University of South Carolina: Columbia, SC, USA, 1995. [Google Scholar]
- Bonneau, G.P. Optimal triangular Haar bases for spherical data. In Proceedings of the Conference on Visualization’99: Celebrating Ten Years, San Francisco, CA, USA, 24–29 October 1999; pp. 279–284. [Google Scholar]
- Nielson, G.; Jung, I.H.; Sung, J. Haar wavelets over triangular domains with aplications to multiresolution models for flow over a sphere. In Proceedings of the 8th Conference on Visualization ’97, Phoenix, AZ, USA, 19–24 October 1997; pp. 143–149. [Google Scholar]
- Lessig, C.; Fiume, E. SOHO: Orthogonal and symmetric Haar wavelets on the sphere. ACM Trans. Graph. 2008, 27, 4:1–4:11. [Google Scholar] [CrossRef]
- Bell, S.B.; Diaz, B.M.; Holroyd, F.; Jackson, M.J. Spatially referenced methods of processing raster and vector data. Image Vis. Comput. 1983, 1, 211–220. [Google Scholar] [CrossRef]
- Clarke, K.C.; GoodChild, M.F.; Kimerling, A.J. Criteria and measures for the comparison of global geocoding systems. In International Conference on Discrete Global Grids; Elsevier: Santa Barbara, CA, USA, 2002; pp. 26–28. [Google Scholar]
- Kimerling, A.J.; Sahr, K.; White, D.; Song, L. Comparing geometrical properties of global grids. Cartogr. Geogr. Inf. Sci. 1999, 26, 271–287. [Google Scholar] [CrossRef]
- Fekete, G.; Treinish, L.A. Sphere quadtrees: A new data structure to support the visualization of spherically distributed data. In Extracting Meaning from Complex Data: Processing, Display, Interaction; International Society for Optics and Photonics: Bellingham, WA, USA, 1990; Volume 1259, pp. 242–253. [Google Scholar]
- Thuburn, J. A PV-based shallow-water model on a hexagonal-icosahedral grid. Mon. Weather Rev. 1997, 125, 2328–2347. [Google Scholar] [CrossRef]
- Dutton, G. Zenithial OrthoTriangular Projection; Proc. Auto-Carto 10; ASPRS: Bethesda, MD, USA, 1991; pp. 77–95. [Google Scholar]
- Kahn, R. What Shall We Do with the Data We are Expecting in 1998? Proceedings of the Massive Data Sets Workshop; The National Academies Press: Washington, DC, USA, 1996; pp. 15–21. [Google Scholar]
- Lukatela, H. Hipparchus geopositioning model: An overview. In Proceedings of the Auto Carto 8 Symposium, Baltimore, MD, USA, 29 March–3 April 1987; pp. 87–96. [Google Scholar]
- Dutton, G. Geodesic modeling of planetary relief. Cartographica 1984, 21, 188–207. [Google Scholar] [CrossRef]
- Möbius, A.F. Der barycentrische calcul. Johann Ambrosius Barth. 1827. Available online: https://books.google.com.hk/books?hl=en&lr=&id=aM9UAAAAcAAJ&oi=fnd&pg=PA3&dq=M%C3%B6bius,+A.F.+Der+barycentrische+calcul.+Johann+Ambrosius+Barth+1827&ots=FJMEk1oPL9&sig=-PM6w5urDe-mFE3Ba_UoiQgEsDc&redir_esc=y&hl=zh-CN&sourceid=cndr#v=onepage&q=M%C3%B6bius%2C%20A.F.%20Der%20barycentrische%20calcul.%20Johann%20Ambrosius%20Barth%201827&f=false (accessed on 8 January 2020).
- Möbius, A.F. Ueber eine neue Behandlungsweise der analytischen Sphärik. Abhandlungen bei Begründung der Königl. Sächs. Gesellschaft der Wissenschaften 1846, 45–86. Available online: https://books.google.com.br/books?id=X3oVw_WTCpYC&pg=PA120-IA1&lpg=PA120-IA1&dq=M%C3%B6bius,+A.F.+Ueber+eine+neue+Behandlungsweise+der+analytischen+Sph%C3%A4rik.+Abhandlungen+bei+Begr%C3%BCndung+der+K%C3%B6nigl.+S%C3%A4chs.+Gesellschaft+der+Wissenschaften+1846&source=bl&ots=72aRY44pzw&sig=ACfU3U3zrThn_2-k-IQD9DEnEzsEn9sfdA&hl=zh-CN&sa=X&ved=2ahUKEwiVv7nS7YfnAhXCFIgKHQsnD84Q6AEwAHoECAQQAQ#v=onepage&q=M%C3%B6bius%2C%20A.F.%20Ueber%20eine%20neue%20Behandlungsweise%20der%20analytischen%20Sph%C3%A4rik.%20Abhandlungen%20bei%20Begr%C3%BCndung%20der%20K%C3%B6nigl.%20S%C3%A4chs.%20Gesellschaft%20der%20Wissenschaften%201846&f=false (accessed on 8 January 2020).
- Alfeld, P.; Neamtu, M.; Schumaker, L.L. Bernstein-Bézier polynomials on spheres and sphere-like surfaces. Comput. Aided Geom. Des. 1996, 13, 333–349. [Google Scholar] [CrossRef]
- Bronw, J.; Worsey, A. Problems with defining barycentric coordinates for the sphere. RAIRO Modélisation Mathématique et Analyse Numérique 1992, 26, 37–49. [Google Scholar]
- Langer, T.; Belyaev, A.; Seidel, H.P. Spherical barycentric coordinates. In Proceedings of the 4th Eurographics Symposium on Geometry Processing (SGP ’06), Cagliari, Italy, 26–28 June 2006; pp. 81–88. [Google Scholar]
- Xiang, W.Y. Spherical geometry and trigonometry. Ebook: Lecture Notes in Basic Mathematics. 2004. (In Chinese). Available online: http://episte.math.ntu.edu.tw/articles/ar/ar_wy_geo_07/page2.html (accessed on 10 January 2020).
- Lee, M.; Samet, H. Navigating through triangle meshes implemented as linear quadtrees. ACM Trians. Graph. 2000, 19, 79–121. [Google Scholar] [CrossRef]
Geo Bisector | Dymaxion | Snyder | SAC | |
---|---|---|---|---|
complete tiling the globe | yes | yes | yes | yes |
equal areas | poor | medium | yes | medium |
same topology | yes | yes | yes | yes |
same shape | yes | yes | yes | yes |
simple relationship | yes | no | no | yes |
any spatial resolution | no | no | no | yes |
compact | good | medium | poor | medium |
Level | Number of Cells | Area per Cell | ||
---|---|---|---|---|
Tetrahedron | Octahedron | Icosahedron | ||
(a) 4-fold | ||||
1 | 4 | /4 | /8 | /20 |
2 | 16 | /16 | /32 | /80 |
3 | 64 | /64 | /128 | /320 |
4 | 256 | /256 | /512 | /1280 |
5 | 1024 | /1024 | /2048 | /5120 |
6 | 4096 | /4096 | /8192 | /20,480 |
7 | 16,384 | /16,384 | /32,768 | /81,920 |
8 | 65,536 | /65,536 | /131,072 | /327,680 |
(b) 9-fold | ||||
1 | 9 | /9 | /18 | /45 |
2 | 81 | /81 | /162 | /405 |
3 | 729 | /729 | /1458 | /3645 |
4 | 6561 | /6561 | /13,122 | /32,805 |
5 | 59,049 | /59,049 | /118,098 | /295,245 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, K.; Qi, D.; Tian, X. A New Coordinate System for Constructing Spherical Grid Systems. Appl. Sci. 2020, 10, 655. https://doi.org/10.3390/app10020655
Lei K, Qi D, Tian X. A New Coordinate System for Constructing Spherical Grid Systems. Applied Sciences. 2020; 10(2):655. https://doi.org/10.3390/app10020655
Chicago/Turabian StyleLei, Kin, Dongxu Qi, and Xiaolin Tian. 2020. "A New Coordinate System for Constructing Spherical Grid Systems" Applied Sciences 10, no. 2: 655. https://doi.org/10.3390/app10020655
APA StyleLei, K., Qi, D., & Tian, X. (2020). A New Coordinate System for Constructing Spherical Grid Systems. Applied Sciences, 10(2), 655. https://doi.org/10.3390/app10020655