Effect of Whey Protein Concentrate on Physicochemical, Sensory and Antioxidative Properties of High-Protein Fat-Free Dairy Desserts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of High-Protein Fat-Free Dairy Desserts
2.3. Penetration Test
2.4. Viscosity Measurements
2.5. Viscoelastic Properties
2.6. Back Extrusion
2.7. Water Activity
2.8. Solvent Extraction for Antioxidant Assays
2.9. Determination of Antioxidant Properties by the DPPH Method
2.10. Determination of Antioxidant Properties by the FRAP Method
2.11. Organoleptic Evaluation
Ethics
2.12. Statistical Analysis
3. Results and Discussion
3.1. Penetration Test
3.2. Viscosity Measurements
3.3. Viscoelastic Properties
3.4. Back Extrusion
3.5. Water Activity
3.6. Determination of Antioxidant Properties by DPPH and FRAP Methods
3.7. Organoleptic Evaluation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Market Research. Future. Dairy Desserts Market Research Report-Global Forecast till 2024. Available online: https://www.marketresearchfuture.com/reports/dairy-desserts-market-5166 (accessed on 7 May 2020).
- Gustaw, W.; Sołowiej, B.; Mleko, S. Otrzymywanie deserów mlecznych z białek serwatkowych z dodatkiem skrobi i karagenu. Żywność. Nauka. Technologia. Jakość 2005, 4, 100–108. [Google Scholar]
- Toker, O.S.; Dogan, M.; Canıyılmaz, E.; Ersoz, N.B.; Kaya, Y. The effects of different gums and their interactions on the rheological properties of a dairy dessert: A mixture design approach. Food Bioprocess Technol. 2012, 6, 896–908. [Google Scholar] [CrossRef]
- Szwajgier, D.; Gustaw, W. The addition of malt to milk-based desserts: Influence on rheological properties and phenolic acid content. LWT 2015, 62, 400–407. [Google Scholar] [CrossRef]
- Aguilar-Raymundo, V.G.; Vélez-Ruiz, J.F. Physicochemical and rheological properties of a dairy dessert, enriched with chickpea flour. Foods 2018, 7, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reis, F.R.; De, P.N.A.B.; Silveira, J.L.M.; Haminiuk, C.W.I.; Cândido, L.M.B.; Richter, R.F.; Meira, S.J.L.; Isidoro, H.C.W.; Bileski, C.L.M. Apparent viscosity of a skim milk based dessert: Optimization through response surface methodology. Food Nutr. Sci. 2011, 2, 90–95. [Google Scholar] [CrossRef] [Green Version]
- Wusigale; Liang, L.; Luo, Y. Casein and pectin: Structures, interactions, and applications. Trends Food Sci. Technol. 2020, 97, 391–403. [Google Scholar] [CrossRef]
- Davoodi, S.H.; Shahbazi, R.; Esmaeili, S.; Sohrabvandi, S.; Mortazavian, A.; Jazayeri, S.; Taslimi, A. Health-related aspects of milk proteins. Iran. J. Pharm. Res. IJPR 2016, 15, 573–591. [Google Scholar]
- Madureira, A.R.; Pereira, C.I.; Gomes, A.M.; Pintado, M.E.; Malcata, F.X. Bovine whey proteins – Overview on their main biological properties. Food Res. Int. 2007, 40, 1197–1211. [Google Scholar] [CrossRef]
- Car, H.; Koprowicz, T.; Tokajuk, A.; Tokajuk, A. The effect of natural whey proteins on mechanisms of blood pressure regulation. Postępy Higieny Medycyny Doświadczalnej 2014, 68, 172–178. [Google Scholar] [CrossRef]
- Graf, S.; Egert, S.; Heer, M. Effects of whey protein supplements on metabolism. Curr. Opin. Clin. Nutr. Metab. Care 2011, 14, 569–580. [Google Scholar] [CrossRef]
- Okuda, M.; Miyashiro, E.; Nakazawa, T.; Yamauchi, K.; Koizumi, R.; Teraguchi, S.; Tamura, Y.; Booka, M.; Yoshikawa, N.; Adachi, Y.; et al. Bovine lactoferrin is effective to suppress Helicobacter pylori colonization in the human stomach: A randomized, double-blind, placebo-controlled study. J. Infect. Chemother. 2005, 11, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Rybak, O. The role of milk proteins in the structure formation of dairy products. Ukr. Food J. 2014, 3, 350–360. [Google Scholar]
- Krolczyk, J.; Dawidziuk, T.; Janiszewska-Turak, E.; Sołowiej, B. Use of Whey and Whey Preparations in the Food Industry—A Review. Pol. J. Food Nutr. Sci. 2016, 66, 157–165. [Google Scholar] [CrossRef]
- Hotchkiss, S.; Brooks, M.; Campbell, R.; Philp, K.; Trius, A. The use of carrageenan in food. In Carrageenans; Pereira, L., Ed.; Nova Science Publishers: New York, NY, USA, 2016; pp. 229–243. [Google Scholar]
- Tarrega, A.; Costell, E. Effect of inulin addition on rheological and sensory properties of fat-free starch-based dairy desserts. Int. Dairy J. 2006, 16, 1104–1112. [Google Scholar] [CrossRef]
- Vidigal, M.C.T.R.; Minim, V.P.R.; Ramos, A.M.; Ceresino, E.B.; Diniz, M.D.M.S.; Camilloto, G.P.; Minim, L.A. Effect of whey protein concentrate on texture of fat-free desserts: Sensory and instrumental measurements. Food Sci. Technol. 2012, 32, 412–418. [Google Scholar] [CrossRef] [Green Version]
- Szafrańska, J.O.; Muszyński, S.; Sołowiej, B. Effect of whey protein concentrate on physicochemical properties of acid casein processed cheese sauces obtained with coconut oil or anhydrous milk fat. LWT 2020, 127, 109434. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nat. Cell Biol. 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Szafrańska, J.O.; Sołowiej, B. Effect of different fibres on texture, rheological and sensory properties of acid casein processed cheese sauces. Int. J. Food Sci. Technol. 2020, 55, 1971–1979. [Google Scholar] [CrossRef]
- Banes, J.; Helm, T.; Taylor, D. Modified whey proteins as texturizers in reduced and low-fat foods. In Food Texture Design and Optimization; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014; pp. 108–127. [Google Scholar]
- Szczesniak, A.S. Texture is a sensory property. Food Qual. Prefer. 2002, 13, 215–225. [Google Scholar] [CrossRef]
- Gustaw, W.; Nastaj, M. Wpływ dodatku wybranych koncentratów białek serwatkowych (WPC) na właściwości reologiczne jogurtów otrzymanych metodą termostatową. Żywność. Nauka. Technologia. Jakość 2007, 1, 56–60. [Google Scholar]
- Chandrapala, J. Whey wasters and powders. In Microstructure of Dairy Products; El-Bakry, M., Sanchez, A., Mehta, B.M., Eds.; John Wiley & Sons Ltd.: Chichester, UK, 2019; pp. 261–290. [Google Scholar]
- Turgeon, S.; Beaulieu, M.; Schmitt, C.; Sanchez, C. Protein–polysaccharide interactions: Phase-ordering kinetics, thermodynamic and structural aspects. Curr. Opin. Colloid Interface Sci. 2003, 8, 401–414. [Google Scholar] [CrossRef]
- Sołowiej, B.; Glibowski, P.; Muszyński, S.; Wydrych, J.; Gawron, A.; Jeliński, T. The effect of fat replacement by inulin on the physicochemical properties and microstructure of acid casein processed cheese analogues with added whey protein polymers. Food Hydrocoll. 2015, 44, 1–11. [Google Scholar] [CrossRef]
- Khan, S.A.; Schnepper, C.A.; Armstrong, R.C. Foam rheology: III. Measurement of shear flow properties. J. Rheol. 1988, 32, 69–92. [Google Scholar] [CrossRef]
- Antunes, A.E.C.; Cazetto, T.F.; Bolini, H.M.A. Skim yogurts added by whey protein concentrate: Texture profile, syneresis and sensorial analysis. Alim. Nutr. 2004, 15, 107–114. [Google Scholar]
- Herrero, A.M.; Requena, T. The effect of supplementing goats milk with whey protein concentrate on textural properties of set-type yoghurt. Int. J. Food Sci. Technol. 2006, 41, 87–92. [Google Scholar] [CrossRef]
- Surówka, K. Tekstura żywności i metody jej badania. Przem. Spoż. 2002, 56, 12–17. [Google Scholar]
- Breene, W.M. Application of texture profile analysis to instrumental food texture evaluation. J. Texture Stud. 1975, 6, 53–82. [Google Scholar] [CrossRef]
- Bierzuńska, P.; Cais-Sokolińska, D.; Yiğit, A. Storage stability of texture and sensory properties of yogurt with the addition of polymerized whey proteins. Foods 2019, 8, 548. [Google Scholar] [CrossRef] [Green Version]
- Corredig, M.; Dalgleish, D.G. The mechanisms of the heat-induced interaction of whey proteins with casein micelles in milk. Int. Dairy J. 1999, 9, 233–236. [Google Scholar] [CrossRef]
- Balejko, J. Reologia żywności; Wydawnictwo Naukowe Akademii Rolniczej w Szczecinie: Szczecin, Polska, 2007. [Google Scholar]
- Antczak, M.; Berthold-Pluta, A.; Lenart, A.; Pluta, A. The effect of heat treatment temperature and active acidity on textural properties of whey protein-pectin gels. Zeszyty Problemowe Postępów Nauk Rolniczych 2018, 595, 3–11. [Google Scholar] [CrossRef]
- Sahi, S. Viscosity Measurements in Food Products and Manufacturing. New Food. Available online: https://www.newfoodmagazine.com/article/15042/viscosity-measurements-food-products/ (accessed on 28 July 2020).
- Saha, D.; Bhattacharya, S. Hydrocolloids as thickening and gelling agents in food: A critical review. J. Food Sci. Technol. 2010, 47, 587–597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cicha-Szot, R.; Falkowicz, S. Wpływ modyfikatora na właściwości wiskoelastyczne żeli krzemianowych. Nafta-Gaz 2010, 12, 1102–1108. [Google Scholar]
- Rich, L.M.; Foegeding, E.A. Effects of sugars on whey protein isolate gelation. J. Agric. Food Chem. 2000, 48, 5046–5052. [Google Scholar] [CrossRef] [PubMed]
- McHugh, D.J. A Guide to the Seaweed Industry. FAO Fisheries Technical Paper. Available online: http://www.fao.org/3/y4765e/y4765e0a.htm (accessed on 23 August 2020).
- Perrot, A.; Mélinge, Y.; Patrice, E.; Rangeard, D.; Lanos, C. The back extrusion test as a technique for determining the rheological and tribological behavior of yield stress fluids at low shear rates. Appl. Rheol. 2011, 21, 53–64. [Google Scholar] [CrossRef]
- Tarrega, A.; Duran, L.; Costell, E. Flow behaviour of semi-solid dairy desserts. Effect of temperature. Int. Dairy J. 2004, 14, 345–353. [Google Scholar] [CrossRef]
- Carvalho-Silva, L.B.; Vissotto, F.Z.; Amaya-Farfán, J. Physico-chemical properties of milk whey protein agglomerates for use in oral nutritional therapy. Food Nutr. Sci. 2013, 4, 69–78. [Google Scholar] [CrossRef]
- Florentin, E.; Cheva-Lier, J.F.; Clavier Manrique, L.; Stőber, P. Shelf-stable dairy mousse. Patent no WO 2013/083697 Al, 13 June 2013. [Google Scholar]
- Johnson, B.R. Whey Protein Concentration in Low-Fat Applications; Dairy Export Council: Arlington, VA, USA, 2000; pp. 1–8. [Google Scholar]
- Gupta, D. Methods for determination of antioxidant capacity: A review. Inter. J. Pharm. Scien. Res. 2015, 6, 546–566. [Google Scholar] [CrossRef]
- Unal, G.; Akalın, A.S. Antioxidant and angiotensin-converting enzyme inhibitory activity of yoghurt fortified with sodium calcium caseinate or whey protein concentrate. Dairy Sci. Technol. 2012, 92, 627–639. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Lindmark-Månsson, H.; Gorton, L.; Åkesson, B. Antioxidant capacity of bovine milk as assayed by spectrophotometric and amperometric methods. Int. Dairy J. 2003, 13, 927–935. [Google Scholar] [CrossRef]
- Chiang, S.-H.; Chang, C.-Y. Antioxidant properties of caseins and whey proteins from colostrums. J. Food Drug Anal. 2020, 13, 6. [Google Scholar] [CrossRef]
- Satué-Gracia, M.T.; Frankel, E.N.; Rangavajhyala, N.; German, J.B. Lactoferrin in infant formulas: Effect on oxidation. J. Agric. Food Chem. 2000, 48, 4984–4990. [Google Scholar] [CrossRef] [PubMed]
- Bierzuńska, P.; Cais-Sokolińska, D.; Rudzińska, M.; Gramza-Michałowska, A. Evaluation of antioxidant activity of whey protein to improve cholesterol oxidation stability in fresh white cheese from buttermilk. J. Food Nut. Res. 2017, 56, 101–108. [Google Scholar]
- Radzki, W.; Sławinska, A.; Jabłonska-Ryś, E.; Michalak-Majewska, M. Effect of blanching and cooking on antioxidant capacity of cultivated edible mushrooms: A comparative study. Int. Food Res. J. 2016, 23, 599–605. [Google Scholar]
- Wanna, C. Free Radical scavenging capacity and total phenolic contents in peel and fleshy crude extracts of selected vegetables. Pharmacogn. J. 2019, 11, 1351–1358. [Google Scholar] [CrossRef] [Green Version]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Byrne, D.H. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Radzki, W.; Sławińska, A.; Jabłońska-Ryś, E.D.; Gustaw, W. Antioxidant capacity and polyphenolic content of dried wild edible mushrooms from Poland. Int. J. Med. Mushrooms 2014, 16, 65–75. [Google Scholar] [CrossRef]
- Đorđević, T.M.; Šiler-Marinković, S.S.; Dimitrijevic-Brankovic, S. Antioxidant activity and total phenolic content in some cereals and legumes. Int. J. Food Prop. 2011, 14, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Gil, M.I.; Tomás-Barberán, F.A.; Hess-Pierce, B.; Kader, A.A. Antioxidant capacities, phenolic compounds, carotenoids, and vitamin C contents of nectarine, peach, and plum cultivars from California. J. Agric. Food Chem. 2002, 50, 4976–4982. [Google Scholar] [CrossRef]
- Clarke, G.; Ting, K.N.; Wiart, C.; Fry, J. High Correlation of 2,2-diphenyl-1-picrylhydrazyl (DPPH) Radical scavenging, ferric reducing activity potential and total phenolics content indicates redundancy in use of all three assays to screen for antioxidant activity of extracts of plants from the Malaysian rainforest. Antioxidants 2013, 2, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.; Ou, B.; Prior, R.L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef] [PubMed]
- Tarrega, A.; Costell, E. Colour and consistency of semi-solid dairy desserts: Instrumental and sensory measurements. J. Food Eng. 2007, 78, 655–661. [Google Scholar] [CrossRef]
Ingredients | Quantity (%) | ||||
---|---|---|---|---|---|
WPC80 | 5.0 | 7.0 | 9.0 | 11.0 | 13.0 |
SMP | 3.33 | ||||
sucrose | 3.33 | ||||
ĸ-carrageenan | 0.05 | ||||
Water | 88.29 | 86.29 | 84.29 | 82.29 | 80.29 |
Content of WPC80 [%] | Texture Attributes | |||
---|---|---|---|---|
Hardness [N] | Adhesiveness [J] | Cohesiveness | Springiness | |
5 | 21.56 a ± 0.78 | 58.25 a ± 4.22 | 0.47 a ± 0.02 | 0.94 a ± 0.009 |
7 | 35.78 b ± 1.68 | 169.59 b ± 10.74 | 0.48 ab ± 0.03 | 0.94 a ± 0.004 |
9 | 37.45 b ± 1.46 | 197.09 b ± 17.03 | 0.51 ab ± 0.02 | 0.95 a ± 0.005 |
11 | 94.2 d ± 5.54 | 412.36 c ± 28.75 | 0.51 ab ± 0.02 | 0.98 c ± 0.02 |
13 | 71.53 c ± 4.41 | 542.9 d ± 29.5 | 0.52 b ± 0.03 | 0.97 b ± 0.03 |
Content of WPC80 [%] | G’(Pa) ± SD | G”(Pa) ± SD | tan(δ) ± SD |
---|---|---|---|
5 | 262.81 a ± 3.88 | 73.12 a ± 0.05 | 0.28 a ± 0.05 |
7 | 502.2 b ± 6.77 | 148.95 b ± 22.77 | 0.3 a ± 0.046 |
9 | 867.07 c ± 40.73 | 342.99 c ± 8.94 | 0.4 b ± 0.02 |
11 | 1608.6 e ± 75.33 | 488.15 d ± 67.56 | 0.31 a ± 0.06 |
13 | 1119.15 d ± 76.99 | 557.86 e ± 29.93 | 0.5 c ± 0.06 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kusio, K.; Szafrańska, J.O.; Radzki, W.; Sołowiej, B.G. Effect of Whey Protein Concentrate on Physicochemical, Sensory and Antioxidative Properties of High-Protein Fat-Free Dairy Desserts. Appl. Sci. 2020, 10, 7064. https://doi.org/10.3390/app10207064
Kusio K, Szafrańska JO, Radzki W, Sołowiej BG. Effect of Whey Protein Concentrate on Physicochemical, Sensory and Antioxidative Properties of High-Protein Fat-Free Dairy Desserts. Applied Sciences. 2020; 10(20):7064. https://doi.org/10.3390/app10207064
Chicago/Turabian StyleKusio, Katarzyna, Jagoda O. Szafrańska, Wojciech Radzki, and Bartosz G. Sołowiej. 2020. "Effect of Whey Protein Concentrate on Physicochemical, Sensory and Antioxidative Properties of High-Protein Fat-Free Dairy Desserts" Applied Sciences 10, no. 20: 7064. https://doi.org/10.3390/app10207064
APA StyleKusio, K., Szafrańska, J. O., Radzki, W., & Sołowiej, B. G. (2020). Effect of Whey Protein Concentrate on Physicochemical, Sensory and Antioxidative Properties of High-Protein Fat-Free Dairy Desserts. Applied Sciences, 10(20), 7064. https://doi.org/10.3390/app10207064