Gliclazide: Biopharmaceutics Characteristics to Discuss the Biowaiver of Immediate and Extended Release Tablets
Abstract
:Featured Application
Abstract
1. Introduction
2. Methods
3. Results and Discussion
3.1. Physical-Chemical Features
3.2. Biopharmaceutics Features and Waiver from Relative Bioavailability/Bioequivalence Studies for Tablets of Immediate Release Containing Gliclazide
3.2.1. Solubility
3.2.2. Permeability
3.2.3. Dissolution
3.3. Extended-Release Solid Oral Dosage Forms Containing Gliclazide
3.4. Waiver of RB/BE Studies for Extended-Release Solid Oral Dosage Forms Containing Gliclazide
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- International Diabetes Atlas (IDF), 9th Edition. 2019. Available online: https://www.diabetesatlas.org/upload/resources/material/20200302_133351_IDFATLAS9e-final-web.pdf (accessed on 17 March 2020).
- Scott, N.A.; Jennings, E.P.; Brown, J.; Belch, J.J.F. Gliclazide: A general free radical scavenger. Eur. J. Pharmacol. Mol. Pharmacol. 1991, 208, 175–177. [Google Scholar] [CrossRef]
- Chen, L.; Liao, Y.; Zeng, T.; Yu, F.; Li, H.; Feng, Y. Effects of metformin plus gliclazide compared with metformin alone on circulating endothelial progenitor cell in type 2 diabetic patients. Endocrine 2010, 38, 266–275. [Google Scholar] [CrossRef] [PubMed]
- Chan, S.P.; Colagiuri, S. Systematic review and meta-analysis of the efficacy and hypoglycemic safety of gliclazide versus other insulinotropic agents. Diabetes Res. Clin. Pract. 2015, 110, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Yu, F.; Zeng, T.; Liao, Y.; Li, Y.; Ding, H. Effects of gliclazide on endothelial function in patients with newly diagnosed type 2 diabetes. Eur. J. Pharmacol. 2011, 659, 296–301. [Google Scholar] [CrossRef]
- O’Brien, R.C.; Luo, M.; Balazs, N.; Mercuri, J. In vitro and in vivo antioxidant properties of gliclazide. J. Diabetes Complicat. 2000, 14, 201–206. [Google Scholar] [CrossRef]
- Patel, A.; MacMahon, S.; Chalmers, J.; Neal, B.; Billot, L.; Woodward, M.; Marre, M.; Cooper, M.; Glasziou, P.; Grobbee, D.; et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 2008, 358, 2560–2572. [Google Scholar] [CrossRef] [Green Version]
- Shorr, R.I.; Ray, W.A.; Daugherty, J.R.; Griffin, M.R. Incidence and risk factors for serious hypoglycemia in older persons using insulin or sulfonylureas. Arch. Intern. Med. 1997, 157, 1681–1686. [Google Scholar] [CrossRef]
- Graal, M.B.; Wolfennbuttel, B.H. The use of sulphonylureas in the elderly. Drugs Aging 1999, 15, 471–481. [Google Scholar] [CrossRef]
- Vilar, L.; Canadas, V.; Arruda, M.J.; Arahata, C.; Agra, R.; Pontes, L.; Montenegro, L.; Vilar, C.F.; Silva, L.M.; Albuquerque, J.L.; et al. Comparação de metformina, gliclazida MR e rosiglitazona em monoterapia e em combinação para o diabetes tipo 2. Arq. Bras. Endocrinol. Metab. 2010, 54, 311–318. [Google Scholar] [CrossRef] [Green Version]
- Erem, C.; Ozbas, H.M.; Nuhoglu, I.; Deger, O.; Civan, N.; Ersoz, H.O. Comparison of effects of gliclazide, metformin and pioglitazone monotherapies on glycemic control and cardiovascular risk factors in patients with newly diagnosed uncontrolled type 2 diabetes mellitus. Exp. Clin. Endocrinol. Diabetes 2014, 122, 295–302. [Google Scholar] [CrossRef]
- American Diabetes Association. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes-2019. Diabetes Care 2019, 42, S98–S110. [Google Scholar]
- Diretrizes da Sociedade Brasileira de Diabetes 2019–2020. Available online: https://www.diabetes.org.br/profissionais/images/DIRETRIZES-COMPLETA-2019-2020.pdf (accessed on 17 March 2020).
- Davies, M.J.; D’Alessio, D.A.; Fradkin, J.; Kernan, W.N.; Mathieu, C.; Mingrone, G.; Rossing, P.; Tsapas, A.; Wexler, D.J.; Buse, B.J. Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2018, 41, 2669–2701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersen, S.E.; Christensen, M. Hypoglycaemia when adding sulphonylurea to metformin: A systematic review and networkmeta-analysis. Br. J. Clin. Pharmacol. 2016, 82, 1291–1302. [Google Scholar] [CrossRef] [Green Version]
- Heller, S.R. DM, FRCP and on behalf of the ADVANCE Collaborative Group. A Summary of the ADVANCE Trial. Diabetes Care 2009, 32, 357–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarkar, A.; Tiwari, A.; Bhasin, P.S.; Mitra, M. Pharmacological and Pharmaceutical Profile of Gliclazide: A Review. J. Appl. Pharm. Sci. 2011, 1, 11–19. [Google Scholar]
- Agence Française de Sécurité Sanitaire des Produits de Santé (AFSSAPS). Public Assessment Report. Scientific Discussion. Diamicron 60 mg, Modified Release Tablet. Gliclazide Biogaran 60 mg, Modified Release Tablet (Gliclazide). Available online: https://www.geneesmiddeleninformatiebank.nl/Pars/h102828.pdf (accessed on 10 November 2019).
- Servier. Identificação do Medicamento Diamicron mr 60 mg Gliclazida. Available online: https://servier.com.br/wp-content/uploads/2018/11/16.07.18_diamicron_mr_bula_profissional_de_saude.pdf (accessed on 17 March 2020).
- World Health Organization (WHO). Model List of Essential Medicines, 21st List. 2019. Available online: https://apps.who.int/iris/bitstream/handle/10665/325771/WHO-MVP-EMP-IAU-2019.06-eng.pdf?sequence=1&isAllowed=y (accessed on 18 March 2020).
- Ministério da Saúde; Secretaria de Ciência, Tecnologia, Inovação e Insumos Estratégicos em Saúde; Departamento de Assistência Farmacêutica e Insumos Estratégicos. Relação Nacional de Medicamentos Essenciais: Rename 2020. Brasília, Brasil. 2019. Available online: https://bvsms.saude.gov.br/bvs/publicacoes/relacao_medicamentos_rename_2020.pdf (accessed on 18 March 2020).
- Federation International Pharmaceutical. Biowaiver Monographs. 2019. Available online: https://www.fip.org/files/fip/BPS/BCS/FIP_biowaiver_progress_table_200521.pdf (accessed on 10 March 2020).
- Federation International Pharmaceutical. What Are Biowaiver Monographs? 2019. Available online: https://www.fip.org/search?page=bcs-monographs (accessed on 9 March 2020).
- World Health Organization. WHO Expert Committee on Specifications for Pharmaceutical Preparations. 2017. Available online: https://www.who.int/medicines/publications/pharmprep/WHO_TRS_996_web.pdf?ua= (accessed on 10 March 2020).
- Amidon, G.L.; Lennernäs, H.; Shah, V.P.; Crison, J.R. A theoretical basis for a biopharmaceutic drug classification: The correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995, 12, 413–420. [Google Scholar] [CrossRef] [Green Version]
- Ministério da Saúde. Agência Nacional de Vigilância Sanitária. Resolução 37 de 3 de agosto de 2011. Dispõe Sobre o Guia Para Isenção e Substituição de Estudos de Biodisponibilidade Relativa/Bioequivalência e dá Outras Providências. Available online: http://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2011/res0037_03_08_2011.html (accessed on 19 December 2019).
- Organização Pan Americama de Saude. Portfólio de Cooperação Técnica OPAS/OMS, 2nd ed. Available online: https://iris.paho.org/bitstream/handle/10665.2/34872/OPASBRA18007-por.pdf?sequence=5&isAllowed=y (accessed on 1 August 2020).
- Araújo, L.U.; Albuquerque, K.T.; Kato, K.C.; Silveira, G.S.; Maciel, N.R.; Spósito, P.A.; Silva-Barcellos, N.M.; Souza, J.; Bueno, M.; Storpirtis, S. Medicamentos genéricos no Brasil: Panorama histórico e legislação. Rev. Panam. Salud. Publica 2010, 28, 480–492. [Google Scholar] [CrossRef] [Green Version]
- Hofsass, M.A.; Souza, J.; Silva-Barcellos, N.M.; Bellavinha, K.R.; Abrahamsson, B.; Cristofoletti, R.; Groot, D.W.; Parr, A.; Langguth, P.; Polli, J.E.; et al. Biowaiver Monographs for Immediate-Release Solid Oral Dosage Forms: Folic Acid. J. Pharm. Sci. 2017, 106, 3421–3430. [Google Scholar] [CrossRef] [Green Version]
- Souza, J.B.; Souza, J.; Castro, L.M.L.; Siqueira, M.F.; Savedra, R.M.L.; Silva-Barcellos, N.M. Evaluation of the losartan solubility in the biowaiver context by shake-flask method and intrinsic dissolution. Pharm. Dev. Technol. 2018, 1, 1–10. [Google Scholar] [CrossRef]
- Arrunátegui, L.B.; Silva-Barcellos, N.M.; Bellavinha, K.R.; EV, L.S.; Souza, J. Biopharmaceutics classification system: Importance and inclusion in biowaiver guidance. Braz. J. Pharm. Sci. 2015, 51, 143–154. [Google Scholar] [CrossRef] [Green Version]
- British Pharmacopeia. Identification of the Substance and of the Company/Undertaking. Gliclazide. Product Identifier. Trade Name: Gliclazide Assay Standard. Available online: https://www.pharmacopoeia.com/Catalogue/Preview?uri=%2Fcontent%2Ffile%2Fproducts%2Fhealthandsafety%2FCat_368_GB.pdf (accessed on 1 November 2019).
- Winters, C.S.; Shields, L.; Timmins, P.; York, P. Solid-state properties and crystal structure of gliclazide. J. Pharm. Sci. 1994, 83, 300–304. [Google Scholar] [CrossRef] [PubMed]
- Jondhale, S.; Brise, S.; Pore, Y. Physicochemical investigations and stability studies of amorphous gliclazide. AAPS Pharm. Sci. Tech. 2012, 13, 448–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varshosaz, J.; Tavakoli, N.; Enteshary, S. Enhancement of antidiabetic effects of gliclazide using immediate release tablets in streptozotocininduced diabetic and normal rats. Farmacia 2013, 61, 820–836. [Google Scholar]
- European Medicines Agency. Committee for Medicinal Products for Human Use (CHMP) Guideline on the Investigation of Bioequivalence. 2017. Available online: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2010/01/WC500070039.pdf (accessed on 12 December 2019).
- Food and Drug Administration (FDA). Waiver of in Vivo Bioavailability and Bioequivalence Studies for Immediate-Release Solid Oral Dosage Forms Based on a Biopharmaceutics Classification System. Guidance for Industry. 2017. Available online: https://www.fda.gov/media/70963/download (accessed on 12 December 2019).
- Nhan, N.T.; Thanh, T.V. Improvement of gliclazide dissolution rate using in situ micronization technique. In 5th International Conference on Biomedical Engineering in Vietnam; Springer: Cham, Switzerland, 2015; Volume 46, pp. 302–305. [Google Scholar] [CrossRef]
- Farmacopeia Brasileira, 6th ed.; Brasília, Brasil Agência Nacional de Vigilância Sanitária e Fundação Oswaldo Cruz: Brasília, Brazil, 2019; pp. 1003–1004.
- El-Sabawi, D.; Hamdan, I.I. Improvement of Dissolution Rate of Gliclazide through Sodium Salt Formation. Dissol. Technol. 2014, 49–55. [Google Scholar] [CrossRef]
- Priya, M.B.V.; Murthy, T.E.G.K. Development of Discriminative Dissolution Media for Marketed Gliclazide Modified-Release Tablets. Dissol. Technol. 2012, 38–42. [Google Scholar] [CrossRef]
- Seedher, N.; Kanojia, M. Co-solvent solubilization of some poorly-soluble antidiabetic drugs. Pharm. Dev. Technol. 2009, 14, 185–192. [Google Scholar] [CrossRef]
- Hermann, T.W.; Dobrucki, R.; Piechocki, S.; Resztak, M.; Reh, R. Pharmaceutical availability of gliclazide from selected matrix formulation tablets. Med. Sci. Monit. 2005, 11, 181–188. [Google Scholar]
- Marques, M.R.C.; Vieira, F.P.; Barro, S.A.C.S. Ensaios de dissolução e comparação de perfis de dissolução. A Regulação de Medicamentos no Brasil; Vieira, F.P., Rediguieri, C.F., Eds.; Artmed: Porto Alegre, Brazil, 2013; pp. 237–272. [Google Scholar]
- Accord-uk Ltd. Gliclazide 60 mg Tablets BP. Summary of Product. Available online: https://www.medicines.org.uk/emc/product/4990/smpc#gref (accessed on 10 December 2019).
- Accord-uk Ltd. Gliclazide 80 mg Tablets BP. Summary of Product. Available online: https://www.medicines.org.uk/emc/product/5883/smpc/print (accessed on 10 December 2019).
- Skripnik, K.K.S. Investigação e Comparação de Perfis de Dissolução de Comprimidos de Liberação Modificada Contendo Fármacos com Diferentes Classificações Biofarmacêuticas Utilizando Diferentes Aparatos de Dissolução. Dissertação de Mestrado; Programa de Pós-Graduação em Farmácia da Universidade Federal de Santa Catarina: Santa Catarina, Brazil, 2015. [Google Scholar]
- Lakka, N.S.; Goswami, N. Solubility and dissolution profile studies of gliclazide in pharmaceutical formulations by RP-HPLC. Int. Res. J. Pharm. 2012, 3, 126–129. [Google Scholar]
- Bezerra, K.C.; Pinto, E.C.; Cabral, L.M.; Sousa, V.P. Development of a Dissolution Method for Gliclazide Modified-Release Tablets Using USP Apparatus 3 with in Vitro–in Vivo Correlation. Chem. Pharm. Bull. 2018, 66, 701–707. [Google Scholar] [CrossRef] [Green Version]
- Biswal, S.; Sahoo, J.; Murthy, P.N.; Giradkar, R.P.; Avari, J.G. Enhancement of Dissolution Rate of Gliclazide Using Solid Dispersions with Polyethylene Glycol 6000. AAPS. Pharm. Sci. Tech. 2008, 9, 563–570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grbic, S.; Parojcic, J.; Ibric, S.; Djuric, Z. In Vitro–In Vivo Correlation for Gliclazide Immediate-Release Tablets Based on Mechanistic Absorption Simulation. AAPS Pharm. Sci. Tech. 2011, 12, 165–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Storpirtis, S.; Gonçalves, J.E.; Chiann, C.; Gai, M.N. Ciências Farmacêuticas Biofarmacotécnica I; Guanabara Koogan: Rio de Janeiro, Brazil, 2009. [Google Scholar]
- Souza, J.; Benet, L.Z.; Huang, Y.; Storpirtis, S. Comparison of bidirectional lamivudine and zidovudine transport using MDCK, MDCK–MDR1, and Caco-2 cell monolayers. J. Pharm. Sci. 2009, 98, 4413–4419. [Google Scholar] [CrossRef] [PubMed]
- Saharan, V.A.; Choudhury, P.K. Dissolution rate enhancement of gliclazide by ordered mixing. Acta Pharm. 2011, 61, 323–334. [Google Scholar] [CrossRef] [Green Version]
- Stetinova, V.; Polaskova, A.; Smetanova, L.; Kholova, D.; Herout, V.; Kvetina, J. Toxicological studies, membrane transport and pharmacodynamic effect of gliclazide in rats. Toxicol. Lett. 2008, 180, 58–59. [Google Scholar] [CrossRef]
- Glowka, F.K.; Hermann, T.W.; Zabel, M. Bioavailability of gliclazide from some formulation tablets. Int. J. Pharm. 1998, 172, 71–77. [Google Scholar] [CrossRef]
- Davis, T.M.E.; Daly, F.; Walsh, J.P.; Ilett, K.F.; Beilby, J.P.; Dusci, L.J.; Barrett, P.H.R. Pharmacokinetics and pharmacodynamics of gliclazide in Caucasians and Australian Aborigines with type 2 diabetes. Br. J. Clin. Pharmacol. 2000, 49, 223–230. [Google Scholar] [CrossRef] [Green Version]
- Kasim, N.A.; Whitehouse, M.; Ramachandran, C.; Bermejo, M.; Lennernas, H.; Hussain, A.S.; Junginger, H.E.; Stavchansky, S.A.; Midha, K.K.; Shan, V.P.; et al. Molecular Properties of WHO Essential Drugs and Provisional Biopharmaceutical Classification. Mol. Pharm. 2004, 1, 85–96. [Google Scholar] [CrossRef]
- Artursson, P.; Karlsson, J. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem. Biophys. Res. Commun. 1991, 175, 880–885. [Google Scholar] [CrossRef]
- Al-Salami, H.; Butt, A.G.; Tucker, I.; Fawcett, P.J.; Golocorbin-kon, S.; Mikov, I.; Mikov, M. Gliclazide reduces MKC intestinal transport in healthy but not diabetic rats. Eur. J. Drug Metab. Pharmacokinet. 2009, 34, 43–50. [Google Scholar] [CrossRef]
- Al-Salami, H.; Butt, G.; Tucker, I.; Skrbic, R.; Golocorbin-Kon, S.; Mikov, M. Probiotic Pre-treatment Reduces Gliclazide Permeation (ex vivo) in Healthy Rats but Increases It in Diabetic Rats to the Level Seen in Untreated Healthy Rats. Arch. Drug Inf. 2008, 1, 35–41. [Google Scholar] [CrossRef] [Green Version]
- Chorilli, M.; Souza, A.A.; Corrêa, F.; Salgado, H.R.N. Estudos de perfil de dissolução dos medicamentos de referência, genéricos e similares contendo cefalexina na forma farmacêutica cápsula. Rev. Ciên. Farm. Básica. Apl. 2010, 31, 69–73. [Google Scholar]
- Hong, S.S.; Lee, S.H.; Lee, Y.J.; Chung, S.J.; Lee, M.H.; Shim, C.K. Accelerated oral absorption of gliclazide in human subjects from a soft gelatin capsule containing a PEG 400 suspension of gliclazide. J. Control. Release 1998, 51, 185–192. [Google Scholar] [CrossRef]
- Demirtürk, E.; Öner, L. Evaluation of in Vitro Dissolution Profile Comparison Methods of Immediate Release Gliclazide Tablet Formulations. J. Faculty Pharm. 2005, 25, 1–10. [Google Scholar]
- Mahjabeen, S.; Lam, K.D.; Faisal, M. Design, Development and Evaluation of Immediate Release Gliclazide Tablets. Lat. Am. J. Pharm. 2011, 30, 1689–1695. [Google Scholar]
- Nazief, A.M.; Hassaan, P.S.; Khalifa, H.M.; Sokar, M.S.; El-Kamel, A.H. Lipid-Based Gliclazide Nanoparticles for Treatment of Diabetes: Formulation, Pharmacokinetics, Pharmacodynamics and Subacute Toxicity Study. Int. J. Nanomed. 2020, 15, 1129–1148. [Google Scholar] [CrossRef] [Green Version]
- Agência Nacional de Vigilância Sanitária. Medicamentos Referência Registrados. Updated: 07/08/2020. Available online: http://portal.anvisa.gov.br/documents/33836/4412457/Lista+A+Inclu%C3%ADdos+07+08+2020.pdf/5d8e9998-faa0-467f-a2c0-a59527aeffd5 (accessed on 10 August 2020).
- Agência Nacional de Vigilância Sanitária. Medicamentos Genéricos Registrados. Updated: 05/08/2019. 2019. Available online: http://portal.anvisa.gov.br/documents/33836/352400/1.1+Gen%C3%A9ricos+registrados+-+por+nome+do+gen%C3%A9rico+27-08-2019/9e4ce425-7915-4cc1-b870-05ee305c1a8f (accessed on 10 March 2020).
- Agência Nacional de Vigilância Sanitária. Lista de Medicamentos Similares e Seus Respectivos Medicamentos de Referência, Conforme RDC 58/2014. Updated: 06/02/2020. Available online: http://portal.anvisa.gov.br/documents/33836/352782/Lista+de+medicamentos+similares+intercambi%C3%A1veis/27d0f06c-5082-4a92-a667-08b4763a498f (accessed on 10 March 2020).
- Delrat, P.; Paraire, M.; Jochemsen, R. Complete bioavailability and lack of food-effect on pharmacokinetics of gliclazide 30 mg modified release in healthy volunteers. Biopharm. Drug. Dispos. 2002, 23, 151–157. [Google Scholar] [CrossRef]
- Yang, J.F.; Wei, G.L.; Lu, R.; Liu, C.X.; Zheng, B.Z.; Feng, P. Bioavailability of Gliclazide Sustained Release Tablet in Healthy Volunteers. Asian J. Pharm. Pharm. 2006, 6, 153–160. [Google Scholar]
- Food and Drug Administration. Bioavailability Studies Submitted in NDAs or INDs—General Considerations. Guidance for Industry. 2019. Available online: https://www.fda.gov/media/121311/download (accessed on 3 March 2020).
- Sharma, V.K.; Mazumder, B. Gastrointestinal transition and anti-diabetic effect of Isabgol husk microparticles containing gliclazide. Int. J. Biol. Macromol. 2014, 66, 15–25. [Google Scholar] [CrossRef]
- Pezzini, B.R.; Silva, M.A.S.; Ferraz, H.G. Formas farmacêuticas sólidas orais de liberação prolongada: Sistemas monolíticos e multiparticulados. Rev. Bras. Cienc. Farm 2007, 43, 491–502. [Google Scholar] [CrossRef] [Green Version]
- Vernon, B.; Wegner, M. Encyclopedia of Biomaterials and Biomedical Engineering; Wnek, G.E., Bowlin, G.L., Eds.; Controlled Release; Marcel Dekker: New York, NY, USA, 2004; pp. 384–391. [Google Scholar]
- Klein, S. The Use of Biorelevant Dissolution Media to Forecast the In Vivo Performance of a Drug. AAPS J. 2010, 12, 397–406. [Google Scholar] [CrossRef] [Green Version]
- Lindenberg, M.; Kopp, S.; Dressman, J.B. Classification of orally administered drugs on the World Health Organization Model list of Essential Medicines according to the biopharmaceutics classification system. Eur. J. Pharm. Biopharm. 2004, 58, 265–278. [Google Scholar] [CrossRef]
Media | Temperature (°C) | Solubility (mg/mL) | RPM | Reference | Calculated D/S ** (mL) | Calculated D/S *** (mL) |
---|---|---|---|---|---|---|
pH 4.5 | 25 | 0.0337 | ------ | NA | NA | |
pH 5.5 | 0.0433 | Shaker | [47] | |||
pH 6.0 | 0.0619 | |||||
pH 6.4 | 0.1133 | |||||
pH 6.8 | 0.2164 | |||||
pH 7.0 | 0.2646 | |||||
pH 6.8 | 0.2774 | |||||
Distilled water | 25 | 0.0373 | ------ | [42] | NA | NA |
pH 2.67 | 0.0715 | Magnetic shaker | ||||
pH 3.69 | 0.0326 | |||||
pH 4.47 | 0.0338 | |||||
pH 5.73 | 0.0689 | |||||
pH 7.4 | 0.1751 | |||||
pH 8.24 | 0.7856 | |||||
pH 9.74 | 1.4754 | |||||
pH 4.5 | room temperature | 0.0578 | 250 | [48] | NA | NA |
pH 5.4 | 0.0742 | |||||
pH 6.8 | 0.2954 | |||||
pH 7.4 | 0.6375 | |||||
pH 1.2 | room temperature | 1.6940 | Mechanical agitation | [41] | NA | NA |
pH 4.5 | 0.0335 | |||||
Distilled water pH 7.0 | 0.3485 | |||||
pH 7.4 | 1.8415 | |||||
pH 1.2 | 37 | 0.4 * | 50 | [49] | 400 | 200 |
pH 4.5 | 0.1 * | Magnetic shaker | 1600 | 800 | ||
pH 5.8 | 0.1 * | 1600 | 800 | |||
pH 6.8 | 0.6 * | 267 | 133.3 | |||
pH 7.2 | 1.2 * | 134 | 66.7 | |||
pH 7.4 | 1.5 * | 107 | 53.33 | |||
pH 1.2 | 37 | 0.81 | ---- | [50] | 197.5 | 98.7 |
pH 1.1 | 37 | 0.8 * | 250 | [51] | 200 | 100 |
pH 6.8 | 0.3 * | (shake flask) | 533.3 | 266.7 | ||
pH 7.4 | 1.1 * | 145.5 | 72.7 | |||
Distilled water | 37 | 0.0526 | ---- | [40] | 3041.8 | 1520.9 |
pH 1.2 | 0.1242 | Shaker | 1288.2 | 644.1 | ||
pH 4.5 | 0.0404 | 3960.4 | 1980.2 | |||
pH 6.8 | 0.1824 | 877.2 | 438.6 |
Method | Reference Value | Results | Reference |
---|---|---|---|
Partition coefficient octanol-water (Log P) | High: ≥1.72 * | 1.97 | [54] |
Partition coefficient octanol-water (Log P) | High: ≥1.72 * | 1.73 | [49] |
Cell Caco-2 (Papp) | >1 × 10−6 cm/s ** | 25 × 10−6 cm/s | [55] |
Absolute bioavailability | High: ≥85% *** | 113.4% | [56] |
High: ≥85% *** | 86–89% | [57] |
Drug | Medium/Volume (mL) | USP | Temperature (°C) | Dissolved Quantity (%)/min | Reference |
---|---|---|---|---|---|
Apparatus/ | |||||
Stirring Speed (rpm) | |||||
Diamicron 80 mg | II/100 | 37 | <50/30 | [51] | |
Glioral 80 mg | pH 1.2/900 | <85/30 | |||
Glikosan 80 mg | <60/20 | ||||
Diamicron 80 mg | <30/30 | ||||
Glioral 80 mg | pH 4.0/900 | <60/30 | |||
Glikosan 80 mg | <30/30 | ||||
Diamicron80 mg | ≥85/30 | ||||
Glioral 80 mg | pH 7.2/900 | ≥85/30 | |||
Glikosan 80 mg | ≥85/30 | ||||
Diabezidum 80 mg | pH 7.4/900 | II/100 | 37 | 81.62/60 | [43] |
Diabrezide 80 mg | 88.83/20 | ||||
Diabezid 80 mg | pH 1.2/--- | II/100 | 37 | 50.95/15 | [56] |
Diabrezide 80 mg | 11.9/15 | ||||
Diamicron 80 mg | pH 1.2/900 | II/100 | 37 | <70/60 | [63] |
Diberin 80 mg | <80/60 | ||||
Diamicron 80 mg | pH 4.0/900 | <40/60 | |||
Diberin 80 mg | <50/60 | ||||
Diamicron 80 mg | pH 7.2/900 | ≥85/30 | |||
Diberin 80 mg | ≥85/30 | ||||
Diamicron 80 mg | pH 7.4/900 | II/100 | 37 | 90.43/20 | [64] |
Diamicron 80 mg | pH 7.4/900 | II/100 | 37 | 84.3/20 | [65] |
95.6/30 | |||||
Diamicron 80 mg | pH 7.4/500 | II/50 | 37 | 33/480 | [66] |
Drug | Concentration (mg) | Industry | Date of Registration | Commercial Name® |
---|---|---|---|---|
Reference (07/08/2020) * | 30 | Servier | 12/11/2012 21/1/2013 | Diamicron MR |
60 | ||||
Generic (05/08/2019) * | 30 | Ranbaxy | 24/09/2012 | --- |
30 | Torrent | 26/10/2015 | --- | |
30; 60 | Pharlab | 31/10/2016 | --- | |
30; 60 | EMS S/A | 23/04/2018 | --- | |
30; 60 | Germed | 02/07/2018 | --- | |
30; 60 | Legrand Pharma | 02/07/2018 | --- | |
30; 60 | Nova Química | 02/07/2018 | --- | |
Similar | 30 | Torrent | 27/07/2015 | Azukon MR |
30; 60 | Pharlab | 31/03/2016 | Dicazid MR | |
30 | Ranbaxy | 15/12/2014 | Tezara MR | |
(06/02/2020) * | 30; 60 | Nova Química | 30/11/2018 | Beteglid |
30; 60 | Germed | 30/11/2018 | Clazi XR | |
30; 60 | Legrand Pharma | 30/11/2018 | Dagli |
Drug | Medium/Volume (mL) | Apparatus USP/Stirring Speed (rpm) | Temperature (°C) | Dissolved Quantity (%)/time h | Reference |
---|---|---|---|---|---|
Azukon® MR 30 mg | pH 4.5/1000 | I/50 | 37 | 54.2/24 | [47] |
pH 6.4/1000 | 63.9/24 | ||||
pH 6.8/1000 | 67.1/24 | ||||
pH 4.5/1000 | I/100 | 37 | 75.7/24 | ||
pH 6.4/1000 | 104.8/24 | ||||
pH 6.8/1000 | 99.6/24 | ||||
pH 4.5/1000 | II/50 | 37 | 63.69/24 | ||
pH 6.4/1000 | 71.60/24 | ||||
pH 6.8/1000 | 74.97/24 | ||||
pH 4.5/1000 | II/100 | 37 | 100.62/24 | ||
pH 6.4/1000 | 101.34/24 | ||||
pH 6.8/1000 | 98.56/24 | ||||
Azukon® MR 30 mg | pH 6.8/1000 | II/100 | 37 | 73.8/24 | |
Diamicron® MR 30 mg | 37 | 98.6/24 | |||
Azukon® MR 30 mg | pH 4.5 por 1 h; | III (Bio-Dis) | 37 | ||
pH 5.5 por 1 h; | 10 dpm, 420 mesh | ||||
pH 6.0 por 1 h; | 73.03/24 | ||||
pH 7.0 por 1 h; | |||||
pH 6.4 por 1 h; | |||||
pH 6.8 por 1 h; /250 ml | |||||
pH 6.8/250 ml | |||||
72.13/24 | |||||
Diamicron® MR 30 mg | pH 7.4/900 | I/100 | 37 | 77/10 | [49] |
Diamicron® MR 30 mg | pH 1.2/900 | II/100 | 37 | 80/4 | |
pH 6.8/900 | 80/8 | ||||
pH 7.4/900 | 80/8 | ||||
pH 1.2 for 1 h; pH 4.5 for 2 h; | III(Bio-Dis)/ | 37 | 95.45/10 | ||
pH 5.8 for 1 h; | 30 dpm, 400 μm mesh | ||||
Diamicron® MR 30 mg | pH 6.8 for 5 h | ||||
pH 7.2 for 1 h; | |||||
/250 mL | |||||
pH 1.2 for 1 h; pH 4.5 for 2 h; | |||||
Azukon® 30 mg | pH 5.8 for 1 h; | ||||
pH 6.8 for 5 h | |||||
pH 7.2 for 1 h; | |||||
/250 mL | |||||
Diaprel 30 mg | pH 7.4/900 | II/100 | 37 | 59.64/6 | [43] |
Diaprel 80 mg | 67.35/8 | ||||
Diamicron® 30 mg | 37 | 90/5.8 | [41] | ||
Nuzide 30 mg | pH 1.2/900 | I/100 | 90/5.3 | ||
Azukon 30 mg | 90/3.3 | ||||
pH 4.5/900 | |||||
Diamicron® 30 mg | 90/26.8 | ||||
Nuzide 30 mg | 90/12.4 | ||||
Azukon 30 mg | pH 7.4/900 | 90/15.6 | |||
Diamicron® 30 mg | distilled water/900 | 90/12.8 | |||
Nuzide 30mg Azukon 30 mg | 90/13.0 | ||||
90/11.0 | |||||
Diamicron® 30 mg | |||||
Nuzide 30mg Azukon 30 mg | 90/10.2 | ||||
90/10.7 | |||||
90/11.7 | |||||
Glizid® MR 60 | pH 1.2/--- | I/-- | 90/9.1 | [73] | |
pH 7.4/--- | 90/7.7 | ||||
distilled water/--- | 90/16.9 | ||||
Gliclazide MR 30 mg | pH 4.5/900 | II/75 | 37 | 73/24 | [48] |
pH 6.8/900 | 89/24 | ||||
pH 7.4/900 | 99/24 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mapa, B.d.C.; Araújo, L.U.; Silva-Barcellos, N.M.; Caldeira, T.G.; Souza, J. Gliclazide: Biopharmaceutics Characteristics to Discuss the Biowaiver of Immediate and Extended Release Tablets. Appl. Sci. 2020, 10, 7131. https://doi.org/10.3390/app10207131
Mapa BdC, Araújo LU, Silva-Barcellos NM, Caldeira TG, Souza J. Gliclazide: Biopharmaceutics Characteristics to Discuss the Biowaiver of Immediate and Extended Release Tablets. Applied Sciences. 2020; 10(20):7131. https://doi.org/10.3390/app10207131
Chicago/Turabian StyleMapa, Bruna de Carvalho, Lorena Ulhôa Araújo, Neila Márcia Silva-Barcellos, Tamires Guedes Caldeira, and Jacqueline Souza. 2020. "Gliclazide: Biopharmaceutics Characteristics to Discuss the Biowaiver of Immediate and Extended Release Tablets" Applied Sciences 10, no. 20: 7131. https://doi.org/10.3390/app10207131