Utility-Based Wireless Routing Algorithm for Massive MIMO Heterogeneous Networks
Abstract
:1. Introduction
2. Related Work
3. Utility-Based Wireless Backhaul Routing
3.1. System Model and Notations
3.2. Problem Formulation
4. Preallocated Sequential Routing
Proposed Algorithm
Algorithm 1. Initialization. | |
Input: , , , , | |
Output: | |
1: | |
2: | ; |
3: | forN = 1: do |
4: | for i = 2: I do |
5: | |
6: | for j = 2: I do |
7: | if j == i then |
8: | ; |
9: | ; |
10: | else |
11: | |
12: | ; |
13: | end if |
14: | end for |
15: | if > then |
16: | = ; |
17: | = i; |
18: | end if |
19: | = 0; |
20: | end for |
21: | s() = s() + 1; |
22: | end for |
Algorithm 2. Main Algorithm. | |
Input: , , , , , , | |
Output: | |
1: | |
2: | fori = 2: do |
3: | ; |
4: | create node set ; |
5: | for m do |
6: | ’s root node; |
7: | = ; |
8: | , , ; |
9: | ; |
10: | if then |
11: | = ; |
12: | ; |
13: | end if |
14: | end for |
15: | update , ; |
16: | end for |
Algorithm 3. Subfunction. | |
Input: , , , | |
Output: U1, | |
1: | ; |
2: | fordo |
3: | for n = 1: do |
4: | |
5: | for j do |
6: | = { − n, , , …, + 1,…}; |
7: | if & then |
8: | ; |
9: | ; |
10: | ; |
11: | |
12: | end if |
13: | end for |
14: | if then |
15: | break; |
16: | else |
17: | = { − n, , , …, + 1, …}; |
18: | end if |
19: | end for |
20: | end for |
21: | ; |
5. Numerical Results
5.1. Simulation Environment Settings
5.2. Simulation 1: Available Antennas
5.3. Simulation 2: Number of BSs
5.4. Simulation 3: Performance Comparison
6. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix B
References
- Andrews, J.G.; Buzzi, S.; Choi, W.; Hanly, S.V.; Lozano, A.; Soong, A.C.; Zhang, J.C. What Will 5G Be? IEEE J. Sel. Areas Commun. 2014, 32, 1065–1082. [Google Scholar] [CrossRef]
- Zhang, Q.; Jin, S.; McKay, M.; Morales-Jimenez, D.; Zhu, H. Power Allocation Schemes for Multicell Massive MIMO Systems. IEEE Trans. Wirel. Commun. 2015, 14, 5941–5955. [Google Scholar] [CrossRef]
- Zhao, J.; Quek, T.Q.S.; Lei, Z. Heterogeneous Cellular Networks Using Wireless Backhaul: Fast Admission Control and Large System Analysis. IEEE J. Sel. Areas Commun. 2015, 33, 2128–2143. [Google Scholar] [CrossRef] [Green Version]
- Tabassum, H.; Sakr, A.H.; Hossain, E. Analysis of Massive MIMO-Enabled Downlink Wireless Backhauling for Full-Duplex Small Cells. IEEE Trans. Commun. 2016, 64, 2354–2369. [Google Scholar] [CrossRef] [Green Version]
- Beyranvand, H.; Lim, W.; Maier, M.; Verikoukis, C.; Salehi, J.A. Backhaul-Aware User Association in FiWi Enhanced LTE-A Heterogeneous Networks. IEEE Trans. Wirel. Commun. 2015, 14, 2992–3003. [Google Scholar] [CrossRef]
- Chen, D.C.; Quek, T.Q.S.; Kountouris, M. Backhauling in Heterogeneous Cellular Networks: Modeling and Tradeoffs. IEEE Trans. Wirel. Commun. 2015, 14, 3194–3206. [Google Scholar] [CrossRef]
- Hong, W.; Tsai, Z. A Multichannel Scheduler for High-Speed Wireless Backhaul Links with Packet Concatenation. IEEE Trans. Mob. Comput. 2010, 9, 201–214. [Google Scholar] [CrossRef]
- Yang, F.; Luo, X. A Restless MAB-Based Index Policy for UL Pilot Allocation in Massive MIMO over Gauss–Markov Fading Channels. IEEE Trans. Veh. Technol. 2020, 69, 3034–3047. [Google Scholar] [CrossRef]
- Mosleh, S.; Almosa, H.; Perrins, E.; Liu, L. Downlink Resource Allocation in Cell-Free Massive MIMO Systems. In Proceedings of the 2019 International Conference on Computing, Networking and Communications (ICNC), Honolulu, HI, USA, 11 April 2019; pp. 883–887. [Google Scholar] [CrossRef]
- Nguyen, T.M.; Ha, V.N.; Le, L.B. Resource Allocation Optimization in Multi-User Multi-Cell Massive MIMO Networks Considering Pilot Contamination. IEEE Access 2015, 3, 1272–1287. [Google Scholar] [CrossRef]
- Buzzi, S.; D’Andrea, C.; Zappone, A.; D’Elia, C. User-Centric 5G Cellular Networks: Resource Allocation and Comparison with the Cell-Free Massive MIMO Approach. IEEE Trans. Wirel. Commun. 2020, 19, 1250–1264. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Björnson, E.; Larsson, E.G. Dynamic Resource Allocation in Co-Located and Cell-Free Massive MIMO. IEEE Trans. Green Commun. Netw. 2020, 4, 209–220. [Google Scholar] [CrossRef] [Green Version]
- Ngo, H.Q.; Matthaiou, M.; Larsson, E.G. Massive MIMO with Optimal Power and Training Duration Allocation. IEEE Wirel. Commun. Lett. 2014, 3, 605–608. [Google Scholar] [CrossRef] [Green Version]
- Huang, K.; Wang, Z.; Wan, X.; Fan, Z.; Xu, Y. Max-Min Resource Allocation for Wireless Power Transfer Enabled Massive MIMO Systems. In Proceedings of the 2019 IEEE 5th International Conference on Computer and Communications (ICCC), Chengdu, China, 13 April 2019; pp. 889–893. [Google Scholar] [CrossRef]
- Khan, I.; Zafar, M.H.; Jan, M.T.; Lloret, J.; Basheri, M.; Singh, D. Spectral and Energy Efficient Low-Overhead Uplink and Downlink Channel Estimation for 5G Massive MIMO Systems. Entropy 2018, 20, 92. [Google Scholar] [CrossRef] [Green Version]
- Saraereh, O.A.; Khan, I.; Alsafasfeh, Q.; Alemaishat, S.; Kim, S. Low-Complexity Channel Estimation in 5G Massive MIMO-OFDM Systems. Symmetry 2019, 11, 713. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, H.; Tran, G.K.; Sakaguchi, K.; Haustein, T. Traffic Adaptive Formation of mmWave Meshed Backhaul Networks. In Proceedings of the 2017 IEEE International Conference on Communications Workshops (ICC Workshops), Paris, UK, 3 July 2017; pp. 185–191. [Google Scholar] [CrossRef]
- Li, Y.; Cai, A.; Qiao, G.; Shi, L.; Bose, S.K.; Shen, G. Multi-Objective Topology Planning for Microwave-Based Wireless Backhaul Networks. IEEE Access 2016, 4, 5742–5754. [Google Scholar] [CrossRef]
- Kuo, F.; Zdarsky, F.A.; Lessmann, J.; Schmid, S. Cost-Efficient Wireless Mobile Backhaul Topologies: An Analytical Study. In Proceedings of the 2010 IEEE Global Telecommunications Conference GLOBECOM 2010, Miami, FL, USA, 10 January 2010; pp. 1–5. [Google Scholar] [CrossRef] [Green Version]
- Nasr, I.; Fahmy, Y. Millimeter-Wave Wireless Backhauling for 5G Small Cells: Scalability of Mesh over Star Topologies. In Proceedings of the 2017 IEEE 18th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM), Macau, China, 13 July 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Chen, D.; Schuler, J.; Wainio, P.; Salmelin, J. 5G Self-optimizing Wireless Mesh backhaul. In Proceedings of the 2015 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Hong Kong, China, 6 August 2015; pp. 23–24. [Google Scholar] [CrossRef]
- Scopelliti, P.; Tropeano, A.; Muntean, G.; Araniti, G. An Energy-quality utility-based adaptive scheduling solution for mobile users in dense networks. IEEE Trans. Broadcast. 2020, 66, 47–55. [Google Scholar] [CrossRef]
- Pham, Q.; Hwang, W. Network Utility Maximization-Based Congestion Control over Wireless Networks: A Survey and Potential Directives. IEEE Commun. Surv. Tutor. 2017, 19, 1173–1200. [Google Scholar] [CrossRef]
- Tan, L.; Zhu, Z.; Ge, F.; Xiong, N. Utility Maximization Resource Allocation in Wireless Networks: Methods and Algorithms. IEEE Trans. Syst Man Cybern. Syst. 2015, 45, 1018–1034. [Google Scholar] [CrossRef]
- Kuo, W.; Chen, C. Distributed Antenna Allocation Scheme for Massive MIMO Cellular Backhaul Networks. IEEE Access 2018, 6, 73895–73904. [Google Scholar] [CrossRef]
- Evolved Universal Terrestrial Radio Access (E-UTRA); Mobility Enhancements in Heterogeneous Networks, Release 11, document TR 36.839 V11.1.0, 3GPP, 2012. 3GPP. Available online: https://www.3gpp.org/specifications/releases/69-release-11 (accessed on 16 October 2020).
- Hoydis, J.; Ten Brink, S.; Debbah, M. Massive MIMO in the UL/DL of cellular networks: How many Antennas do we need? IEEE J. Sel. Areas Commun. 2013, 31, 160–171. [Google Scholar] [CrossRef] [Green Version]
Parameter | Value |
---|---|
Bandwidth (B) | 1000 MHz |
Transmit power (P) | 10 W |
Noise density (D) | −204 dBW/Hz |
bps | |
Minimal distance between BSs | 250 m |
The number of UE for each BS | 60 |
PSR | SPT | CFC | |
---|---|---|---|
Jain’s index | 0.5243 | 0.1499 | 0.2107 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, W.; Kuo, W.-H. Utility-Based Wireless Routing Algorithm for Massive MIMO Heterogeneous Networks. Appl. Sci. 2020, 10, 7261. https://doi.org/10.3390/app10207261
Zhao W, Kuo W-H. Utility-Based Wireless Routing Algorithm for Massive MIMO Heterogeneous Networks. Applied Sciences. 2020; 10(20):7261. https://doi.org/10.3390/app10207261
Chicago/Turabian StyleZhao, Wei, and Wen-Hsing Kuo. 2020. "Utility-Based Wireless Routing Algorithm for Massive MIMO Heterogeneous Networks" Applied Sciences 10, no. 20: 7261. https://doi.org/10.3390/app10207261
APA StyleZhao, W., & Kuo, W. -H. (2020). Utility-Based Wireless Routing Algorithm for Massive MIMO Heterogeneous Networks. Applied Sciences, 10(20), 7261. https://doi.org/10.3390/app10207261