Bioelectrical Signals for the Diagnosis and Therapy of Functional Gastrointestinal Disorders
Abstract
:1. Introduction
2. Oropharynx and Esophagus
2.1. Diagnostics
2.2. Therapies
3. Stomach
3.1. Diagnostics
3.2. Therapies
4. Small Intestine
4.1. Diagnostics
4.2. Therapies
5. Large Intestine
5.1. Diagnostics
5.2. Therapies
6. Summary and Future Directions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ALS | Amyotrophic Lateral Sclerosis |
CES | Colonic electrical stimulation |
cpm | Cycles per minute |
EColG | Electrocolonography |
EEG | Electroencephalography |
EENG | Electroenterography |
EMG | Electromyography |
EGG | Electrogastrography |
FBD | Functional bowel disease |
FGID | Functional gastrointestinal disorder |
FI | Fecal incontinence |
GI | Gastrointestinal |
ICC | Interstitial cells of Cajal |
IBS | Irritable bowel syndrome |
MEG | Magnetoencephalography |
MENG | Magnetoenterography |
MEP | Muscle evoked potential |
MGG | Magnetogastrography |
MRI | Magnetic resonance imaging |
NMES | Neuromuscular electrical stimulation |
PES | Pharyngeal electrical stimulation |
SEP | Sensory evoked potential |
SNS | Sacral nerve stimulation |
SW | Slow wave |
TES | Transcutaneous electrical stimulation |
TMS | Transcranial magnetic stimulation |
References
- Schneeman, B.O. Gastrointestinal physiology and functions. Br. J. Nutr. 2002, 88, S159–S163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooke, A.R. Control of Gastric Emptying and Motility. Gastroenterology 1975, 68, 804–816. [Google Scholar] [CrossRef]
- Goyal, R.K.; Chaudhury, A. Physiology of Normal Esophageal Motility. J. Clin. Gastroenterol. 2008, 42, 610–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huizinga, J.D.; Lammers, W.J.E.P. Gut peristalsis is governed by a multitude of cooperating mechanisms. Am. J. Physiol. Liver Physiol. 2009, 296, G1–G8. [Google Scholar] [CrossRef]
- Drossman, D.A. Functional Gastrointestinal Disorders: History, Pathophysiology, Clinical Features, and Rome IV. Gastroenterology 2016, 150, 1262–1279.e2. [Google Scholar] [CrossRef] [Green Version]
- Sperber, A.D.; Bangdiwala, S.I.; Drossman, D.A.; Ghoshal, U.C.; Simren, M.; Tack, J.; Whitehead, W.E.; Dumitrascu, D.L.; Fang, X.; Fukudo, S.; et al. Worldwide Prevalence and Burden of Functional Gastrointestinal Disorders, Results of Rome Foundation Global Study. Gastroenterology 2020. [Google Scholar] [CrossRef]
- Nyrop, K.A.; Palsson, O.S.; Levy, R.L.; Von Korff, M.; Feld, A.D.; Turner, M.J.; Whitehead, W.E. Costs of health care for irritable bowel syndrome, chronic constipation, functional diarrhoea and functional abdominal pain. Aliment. Pharmacol. Ther. 2007, 26, 237–248. [Google Scholar] [CrossRef]
- Browning, K.N.; Travagli, R.A. Central Nervous System Control of Gastrointestinal Motility and Secretion and Modulation of Gastrointestinal Functions. Compr. Physiol. 2014, 4, 1339–1368. [Google Scholar] [CrossRef] [Green Version]
- Travagli, R.A.; Anselmi, L. Vagal neurocircuitry and its influence on gastric motility. Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 389–401. [Google Scholar] [CrossRef] [Green Version]
- Windgassen, S.; Moss-Morris, R.; Chilcot, J.; Sibelli, A.; Goldsmith, K.; Chalder, T. The journey between brain and gut: A systematic review of psychological mechanisms of treatment effect in irritable bowel syndrome. Br. J. Heal. Psychol. 2017, 22, 701–736. [Google Scholar] [CrossRef]
- Everitt, H.; Landau, S.; Little, P.S.; Bishop, F.L.; O’Reilly, G.; Sibelli, A.; Holland, R.; Hughes, S.; Windgassen, S.; McCrone, P.; et al. Therapist telephone-delivered CBT and web-based CBT compared with treatment as usual in refractory irritable bowel syndrome: The ACTIB three-arm RCT. Heal. Technol. Assess. 2019, 23, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reardon, S. Electroceuticals spark interest. Nat. Cell Biol. 2014, 511, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Grady, G.; Wang, T.H.-H.; Du, P.; Angeli, T.; Lammers, W.J.E.P.; Cheng, L.K. Recent progress in gastric arrhythmia: Pathophysiology, clinical significance and future horizons. Clin. Exp. Pharmacol. Physiol. 2014, 41, 854–862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.D.; Yin, J.; Wei, W. Electrical therapies for gastrointestinal motility disorders. Expert Rev. Gastroenterol. Hepatol. 2017, 11, 407–418. [Google Scholar] [CrossRef]
- Robbins, J.; Butler, S.G.; Daniels, S.K.; Gross, R.D.; Langmore, S.; Lazarus, C.L.; Martin-Harris, B.; McCabe, D.; Musson, N.; Rosenbek, J. Swallowing and Dysphagia Rehabilitation: Translating Principles of Neural Plasticity Into Clinically Oriented Evidence. J. Speech Lang. Hear. Res. 2008, 51, S276–S300. [Google Scholar] [CrossRef]
- Huckabee, M.-L.; Doeltgen, S. Emerging modalities in dysphagia rehabilitation: Neuromuscular electrical stimulation. N. Z. Med. J. 2007, 120, U2744. [Google Scholar]
- Huckabee, M.-L.; Macrae, P.; Lamvik, K. Expanding Instrumental Options for Dysphagia Diagnosis and Research: Ultrasound and Manometry. Folia Phoniatr. Logop. 2015, 67, 269–284. [Google Scholar] [CrossRef]
- Miller, C.K.; Schroeder, J.W.; Langmore, S. Fiberoptic Endoscopic Evaluation of Swallowing Across the Age Spectrum. Am. J. Speech Lang. Pathol. 2020, 29, 967–978. [Google Scholar] [CrossRef]
- Huckabee, M.-L.; Lamvik, K.; Jones, R. Pharyngeal mis-sequencing in dysphagia: Characteristics, rehabilitative response, and etiological speculation. J. Neurol. Sci. 2014, 343, 153–158. [Google Scholar] [CrossRef]
- Carlson, D.A.; Pandolfino, J.E. High-Resolution Manometry in Clinical Practice. Gastroenterol. Hepatol. 2015, 11, 374–384. [Google Scholar]
- Omari, T.; Schar, M. High-resolution manometry: What about the pharynx? Curr. Opin. Otolaryngol. Head. Neck Surg. 2018, 26, 382–391. [Google Scholar] [CrossRef] [PubMed]
- Yamamura, K.; Kurose, M.; Okamoto, K. Guide to Enhancing Swallowing Initiation: Insights from Findings in Healthy Subjects and Dysphagic Patients. Curr. Phys. Med. Rehabilitation Rep. 2018, 6, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Doty, R.W.; Bosma, J.F. An Electromyographic Analysis of Reflex Deglutition. J. Neurophysiol. 1956, 19, 44–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crespo, A.N.; Kimaid, P.A.; Júnior, A.J.M.; Wolf, A.E. Laryngeal Electromyography: Are the Results Reproducible? J. Voice 2015, 29, 498–500. [Google Scholar] [CrossRef]
- Crary, M.A.; Baldwin, B.O. Surface Electromyographic Characteristics of Swallowing in Dysphagia Secondary to Brainstem Stroke. Dysphagia 1997, 12, 180–187. [Google Scholar] [CrossRef]
- Zhu, M.; Yu, B.; Yang, W.; Jiang, Y.; Lu, L.; Huang, Z.; Chen, S.; Li, G. Evaluation of normal swallowing functions by using dynamic high-density surface electromyography maps. Biomed. Eng. Online 2017, 16, 133. [Google Scholar] [CrossRef] [Green Version]
- Chester, C.J.; Gaynor, P.T.; Jones, R.D.; Huckabee, M.-L. Electrical bioimpedance measurement as a tool for dysphagia visualisation. Heal. Technol. Lett. 2014, 1, 115–118. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; McIlduff, C.; Gutierrez, H.; MacKenzie, S.; Rutkove, S. Bioimpedance Measurement to Evaluate Swallowing in a Patient with Amyotrophic Lateral Sclerosis. In Proceedings of the 17th International Conference on Electrical Bioimpedance, Joinville, Santa Catarina, Brazil, 9–13 June 2019; Bertemes-Filho, P., Ed.; Springer: Singapore, 2020; pp. 107–112. [Google Scholar]
- Cabib, C.; Ortega, O.; Vilardell, N.; Mundet, L.; Clave, P.; Rofes, L. Chronic post-stroke oropharyngeal dysphagia is associated with impaired cortical activation to pharyngeal sensory inputs. Eur. J. Neurol. 2017, 24, 1355–1362. [Google Scholar] [CrossRef]
- Hamdy, S.; Aziz, Q.; Rothwell, J.C.; Singh, K.D.; Barlow, J.; Hughes, D.G.; Tallis, R.C.; Thompson, D.G. The cortical topography of human swallowing musculature in health and disease. Nat. Med. 1996, 2, 1217–1224. [Google Scholar] [CrossRef]
- Hamdy, S.; Aziz, Q.; Rothwell, J.C.; Crone, R.; Hughes, D.; Tallis, R.C.; Thompson, D.G. Explaining oropharyngeal dysphagia after unilateral hemispheric stroke. Lancet 1997, 350, 686–692. [Google Scholar] [CrossRef]
- Hamdy, S.; Aziz, Q.; Rothwell, J.C.; Power, M.; Singh, K.D.; Nicholson, D.A.; Tallis, R.C.; Thompson, D.G. Recovery of swallowing after dysphagic stroke relates to functional reorganization in the intact motor cortex. Gastroenterology 1998, 115, 1104–1112. [Google Scholar] [CrossRef]
- Furlong, P.L.; Hobson, A.; Aziz, Q.; Barnes, G.R.; Singh, K.D.; Hillebrand, A.; Thompson, D.; Hamdy, S. Dissociating the spatio-temporal characteristics of cortical neuronal activity associated with human volitional swallowing in the healthy adult brain. NeuroImage 2004, 22, 1447–1455. [Google Scholar] [CrossRef] [PubMed]
- Teismann, I.; Warnecke, T.; Suntrup, S.; Steinsträter, O.; Kronenberg, L.; Ringelstein, E.B.; Dengler, R.; Petri, S.; Pantev, C.; Dziewas, R. Cortical Processing of Swallowing in ALS Patients with Progressive Dysphagia—A Magnetoencephalographic Study. PLoS ONE 2011, 6, e19987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jean, A. Brainstem Organization of the Swallowing Network. Brain Behav. Evol. 1984, 25, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Jean, A. Control of the central swallowing program by inputs from the peripheral receptors. A review. J. Auton. Nerv. Syst. 1984, 10, 225–233. [Google Scholar] [CrossRef]
- Doty, R.W.; Richmond, W.H.; Storey, A.T. Effect of medullary lesions on coordination of deglutition. Exp. Neurol. 1967, 17, 91–106. [Google Scholar] [CrossRef]
- Kahrilas, P.; Dodds, W.; Dent, J.; Logemann, J.; Shaker, R. Upper esophageal sphincter function during deglutition. Gastroenterology 1988, 95, 52–62. [Google Scholar] [CrossRef]
- Mosier, K.; Bereznaya, I. Parallel cortical networks for volitional control of swallowing in humans. Exp. Brain Res. 2001, 140, 280–289. [Google Scholar] [CrossRef]
- Dziewas, R.; Sörös, P.; Ishii, R.; Chau, W.; Henningsen, H.; Ringelstein, E.; Knecht, S.; Pantev, C. Neuroimaging evidence for cortical involvement in the preparation and in the act of swallowing. NeuroImage 2003, 20, 135–144. [Google Scholar] [CrossRef]
- Huckabee, M.-L.; Gozdzikowska, K. Reconsidering Rehabilitation for Neurogenic Dysphagia: Strengthening Skill in Swallowing. Curr. Phys. Med. Rehabil. Rep. 2018, 6, 186–191. [Google Scholar] [CrossRef]
- Yang, H.; Guan, C.; Ang, K.K.; Wang, C.C.; Phua, K.S.; Yu, J. Dynamic initiation and dual-tree complex wavelet feature-based classification of motor imagery of swallow EEG signals. In Proceedings of the 2012 International Joint Conference on Neural Networks (IJCNN), Brisbane, Australia, 10–15 June 2012. [Google Scholar]
- Lee, Y.; Nicholls, B.; Lee, D.S.; Chen, Y.; Chun, Y.; Ang, C.S.; Yeo, W.-H. Soft Electronics Enabled Ergonomic Human-Computer Interaction for Swallowing Training. Sci. Rep. 2017, 7, srep46697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kober, S.E.; Grössinger, D.; Wood, G. Effects of Motor Imagery and Visual Neurofeedback on Activation in the Swallowing Network: A Real-Time fMRI Study. Dysphagia 2019, 34, 879–895. [Google Scholar] [CrossRef] [PubMed]
- Aragão, L.C.; Pernambuco, L.; Da Silva, C.M.; Chateaubriand, M.M.; Da Silva, H.J. Effects of electromyographic biofeedback as an adjunctive therapy in the treatment of swallowing disorders: A systematic review of the literature. Eur. Arch. Oto-Rhino-Laryngol. 2019, 276, 927–938. [Google Scholar] [CrossRef]
- Jayasekeran, V.; Singh, S.; Tyrrell, P.; Michou, E.; Jefferson, S.; Mistry, S.; Gamble, E.; Rothwell, J.; Thompson, D.; Hamdy, S. Adjunctive Functional Pharyngeal Electrical Stimulation Reverses Swallowing Disability after Brain Lesions. Gastroenterology 2010, 138, 1737–1746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bath, P.M.; Scutt, P.; Love, J.; Clavé, P.; Cohen, D.; Dziewas, R.; Iversen, H.K.; Ledl, C.; Ragab, S.; Soda, H.; et al. Pharyngeal Electrical Stimulation for Treatment of Dysphagia in Subacute Stroke: A Randomized Controlled Trial. Stroke 2016, 47, 1562–1570. [Google Scholar] [CrossRef]
- Clark, H.; Lazarus, C.; Arvedson, J.; Schooling, T.; Frymark, T. Evidence-Based Systematic Review: Effects of Neuromuscular Electrical Stimulation on Swallowing and Neural Activation. Am. J. Speech Lang. Pathol. 2009, 18, 361–375. [Google Scholar] [CrossRef] [Green Version]
- Langdon, P.C.; Blacker, D. Dysphagia in Stroke: A New Solution. Stroke Res. Treat. 2010, 2010, 570403. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.N.; Pyun, S.-B.; Kim, H.J.; Ahn, H.S.; Rhyu, B.J. Effectiveness of Non-invasive Brain Stimulation in Dysphagia Subsequent to Stroke: A Systemic Review and Meta-analysis. Dysphagia 2015, 30, 383–391. [Google Scholar] [CrossRef]
- Pisegna, J.M.; Kaneoka, A.; Pearson, W.G.; Kumar, S.; Langmore, S.E. Effects of non-invasive brain stimulation on post-stroke dysphagia: A systematic review and meta-analysis of randomized controlled trials. Clin. Neurophysiol. 2016, 127, 956–968. [Google Scholar] [CrossRef] [Green Version]
- Fukami, N.; Anderson, M.A.; Khan, K.; Harrison, M.E.; Appalaneni, V.; Ben-Menachem, T.; Decker, G.A.; Fanelli, R.D.; Fisher, L.; Ikenberry, S.O.; et al. The role of endoscopy in gastroduodenal obstruction and gastroparesis. Gastrointest. Endosc. 2011, 74, 13–21. [Google Scholar] [CrossRef]
- Fox, M.R.; On behalf of the International Working Group for Disorders of Gastrointestinal Motility and Function; Kahrilas, P.J.; Roman, S.; Gyawali, C.P.; Scott, M.; Rao, S.S.; Keller, J.; Camilleri, M. Clinical measurement of gastrointestinal motility and function: Who, when and which test? Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 568–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abell, T.L.; Camilleri, M.; Donohoe, K.; Hasler, W.L.; Lin, H.C.; Maurer, A.H.; McCallum, R.W.; Nowak, T.; Nusynowitz, M.L.; Parkman, H.P.; et al. Consensus Recommendations for Gastric Emptying Scintigraphy: A Joint Report of the American Neurogastroenterology and Motility Society and the Society of Nuclear Medicine. J. Nucl. Med. Technol. 2008, 36, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Saad, R.J.; Hasler, W.L. A Technical Review and Clinical Assessment of the Wireless Motility Capsule. Gastroenterol. Hepatol. 2011, 7, 795–804. [Google Scholar]
- Rao, S.S.C.; Camilleri, M.; Hasler, W.L.; Maurer, A.H.; Parkman, H.P.; Saad, R.; Scott, M.S.; Simren, M.; Soffer, E.; Szarka, L. Evaluation of gastrointestinal transit in clinical practice: Position paper of the American and European Neurogastroenterology and Motility Societies. Neurogastroenterol. Motil. 2011, 23, 8–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marciani, L. Assessment of gastrointestinal motor functions by MRI: A comprehensive review. Neurogastroenterol. Motil. 2011, 23, 399–407. [Google Scholar] [CrossRef]
- Alvarez, W.C. The Electrogastrogram and What It Shows. JAMA 1922, 78, 1116–1119. [Google Scholar] [CrossRef]
- Nelsen, T.S.; Kohatsu, S. Clinical electrogastrography and its relationship to gastric surgery. Am. J. Surg. 1968, 116, 215–222. [Google Scholar] [CrossRef]
- Hinder, R.A.; Kelly, K.A. Human gastric pacesetter potential. Site of origin, spread, and response to gastric transection and proximal gastric vagotomy. Am. J. Surg. 1977, 133, 29–33. [Google Scholar] [CrossRef]
- Cheng, L.L.; Du, P.; O’Grady, G. Mapping and Modeling Gastrointestinal Bioelectricity: From Engineering Bench to Bedside. Physiology 2013, 28, 310–317. [Google Scholar] [CrossRef] [Green Version]
- Lammers, W.J.E.P.; Stephen, B.; Arafat, K.; Manefield, G.W. High resolution electrical mapping in the gastrointestinal system: Initial results. Neurogastroenterol. Motil. 1996, 8, 207–216. [Google Scholar] [CrossRef]
- O’Grady, G.; Du, P.; Cheng, L.K.; Egbuji, J.U.; Lammers, W.J.E.P.; Windsor, J.A.; Pullan, A.J. Origin and propagation of human gastric slow-wave activity defined by high-resolution mapping. Am. J. Physiol. Liver Physiol. 2010, 299, G585–G592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berry, R.; Miyagawa, T.; Paskaranandavadivel, N.; Du, P.; Angeli, T.R.; Trew, M.L.; Windsor, J.A.; Imai, Y.; O’Grady, G.; Cheng, L.L. Functional physiology of the human terminal antrum defined by high-resolution electrical mapping and computational modeling. Am. J. Physiol. Liver Physiol. 2016, 311, G895–G902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Grady, G.; Angeli, T.R.; Du, P.; Lahr, C.; Lammers, W.J.; Windsor, J.A.; Abell, T.L.; Farrugia, G.; Pullan, A.J.; Cheng, L.K. Abnormal Initiation and Conduction of Slow-Wave Activity in Gastroparesis, Defined by High-Resolution Electrical Mapping. Gastroenterology 2012, 143, 589–598.e3. [Google Scholar] [CrossRef] [Green Version]
- Angeli, T.R.; Cheng, L.K.; Du, P.; Wang, T.H.-H.; Bernard, C.E.; Vannucchi, M.-G.; Faussone-Pellegrini, M.S.; Lahr, C.; Vather, R.; Windsor, J.A.; et al. Loss of Interstitial Cells of Cajal and Patterns of Gastric Dysrhythmia in Patients with Chronic Unexplained Nausea and Vomiting. Gastroenterology 2015, 149, 56–66.e5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farrugia, A.G. Interstitial cells of Cajal in health and disease. Neurogastroenterol. Motil. 2008, 20, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Grover, M.; Farrugia, G.; Lurken, M.S.; Bernard, C.E.; Faussone–Pellegrini, M.S.; Smyrk, T.C.; Parkman, H.P.; Abell, T.L.; Snape, W.J.; Hasler, W.L.; et al. Cellular Changes in Diabetic and Idiopathic Gastroparesis. Gastroenterology 2011, 140, 1575–1585.e8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Familoni, B.; Abell, T.L.; Voeller, G. Measurement of Gastric and Small Bowel Electrical Activity at Laparoscopy. J. Laparoendosc. Surg. 1994, 4, 325–332. [Google Scholar] [CrossRef]
- O’Grady, G.; Du, P.; Egbuji, J.U.; Lammers, W.J.E.P.; Wahab, A.; Pullan, A.J.; Cheng, L.K.; Windsor, J.A. A novel laparoscopic device for measuring gastrointestinal slow-wave activity. Surg. Endosc. 2009, 23, 2842–2848. [Google Scholar] [CrossRef] [Green Version]
- Berry, R.; Paskaranandavadivel, N.; Du, P.; Trew, M.L.; O’Grady, G.; Windsor, J.A.; Cheng, L.K. A novel retractable laparoscopic device for mapping gastrointestinal slow wave propagation patterns. Surg. Endosc. 2017, 31, 477–486. [Google Scholar] [CrossRef] [Green Version]
- Coleski, R.; Hasler, W.L. Coupling and propagation of normal and dysrhythmic gastric slow waves during acute hyperglycaemia in healthy humans. Neurogastroenterol. Motil. 2009, 21, 492-e2. [Google Scholar] [CrossRef] [Green Version]
- Ayinala, S.; Batista, O.; Goyal, A.; Al-Juburi, A.; Abidi, N.; Familoni, B.; Abell, T. Temporary gastric electrical stimulation with orally or PEG-placed electrodes in patients with drug refractory gastroparesis. Gastrointest. Endosc. 2005, 61, 455–461. [Google Scholar] [CrossRef]
- Paskaranandavadivel, N.; Angeli, T.R.; Manson, T.; Stocker, A.; McElmurray, L.; O’Grady, G.; Abell, T.; Cheng, L.K. Multi-day, multi-sensor ambulatory monitoring of gastric electrical activity. Physiol. Meas. 2019, 40, 025011. [Google Scholar] [CrossRef]
- Koch, K.L. Gastric dysrhythmias: A potential objective measure of nausea. Exp. Brain Res. 2014, 232, 2553–2561. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Chen, J.Z. Abnormal gastric slow waves in patients with functional dyspepsia assessed by multichannel electrogastrography. Am. J. Physiol. Liver Physiol. 2001, 280, G1370–G1375. [Google Scholar] [CrossRef]
- Gharibans, A.A.; Kim, S.; Kunkel, D.C.; Coleman, T.P. High-Resolution Electrogastrogram: A Novel, Noninvasive Method for Determining Gastric Slow-Wave Direction and Speed. IEEE Trans. Biomed. Eng. 2017, 64, 807–815. [Google Scholar] [CrossRef] [PubMed]
- Allescher, H.-D.; Abraham-Fuchs, K.; Dunkel, R.; Classen, M. Biomagnetic 3-dimensional spatial and temporal characterization of electrical activity of human stomach. Dig. Dis. Sci. 1998, 43, 683–693. [Google Scholar] [CrossRef] [PubMed]
- Richards, W.O.; Bradshaw, L.A.; Staton, D.J.; Garrard, C.L.; Liu, F.; Buchanan, S.; Wikswo, J.P. Magnetoenterography (MENG): Noninvasive measurement of bioelectric activity in human small intestine. Dig Dis Sci 1996, 41, 2293–2301. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.K.; Pullan, A.J.; Bradshaw, L.; Cheng, L.K. Influence of body parameters on gastric bioelectric and biomagnetic fields in a realistic volume conductor. Physiol. Meas. 2012, 33, 545–556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradshaw, L.A.; Kim, J.H.; Somarajan, S.; Richards, W.O.; Cheng, L.K. Characterization of Electrophysiological Propagation by Multichannel Sensors. IEEE Trans. Biomed. Eng. 2015, 63, 1751–1759. [Google Scholar] [CrossRef] [Green Version]
- Bradshaw, L.A.; Cheng, L.K.; Chung, E.; Obioha, C.B.; Erickson, J.C.; Gorman, B.L.; Somarajan, S.; Richards, W.O. Diabetic gastroparesis alters the biomagnetic signature of the gastric slow wave. Neurogastroenterol. Motil. 2016, 28, 837–848. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, J.D.Z. Systematic review: Applications and future of gastric electrical stimulation. Aliment. Pharmacol. Ther. 2006, 24, 991–1002. [Google Scholar] [CrossRef] [PubMed]
- Bilgutay, A.M.; Wingrove, R.; Griffen, W.O.; Bonnabeau, R.C.; Lillehei, W.C. Gastro-intestinal pacing: A new concept in the treatment of ileus. Ann Surg 1963, 158, 338–348. [Google Scholar] [CrossRef] [PubMed]
- Familoni, B.O.; Abell, T.L.; Voeller, G.; Salem, A.; Gaber, O. Case Report: Electrical Stimulation at a Frequency Higher than Basal Rate in Human Stomach. Dig. Dis. Sci. 1997, 42, 885–891. [Google Scholar] [CrossRef] [PubMed]
- Abell, T.; Van Cutsem, E.; Abrahamsson, H.; Huizinga, J.D.; Konturek, J.; Galmiche, J.P.; VoelIer, G.; Filez, L.; Everts, B.; Waterfall, W.E.; et al. Gastric Electrical Stimulation in Intractable Symptomatic Gastroparesis. Digestion 2002, 66, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Isabelle, L.; McCallum, R.; Hocking, M.; Koch, K.; Abrahamsson, H.; Leblanc, I.; Lindberg, G.; Konturek, J.; Nowak, T.; Quigley, E.M.; et al. Gastric electrical stimulation for medically refractory gastroparesis. Gastroenterology 2003, 125, 421–428. [Google Scholar] [CrossRef]
- O’Grady, G.; Egbuji, J.U.; Du, P.; Cheng, L.K.; Pullan, A.J.; Windsor, J.A. High-Frequency Gastric Electrical Stimulation for the Treatment of Gastroparesis: A Meta-Analysis. World J. Surg. 2009, 33, 1693–1701. [Google Scholar] [CrossRef]
- Chu, H.; Lin, Z.; Zhong, L.; McCallum, R.; Hou, X. Treatment of high-frequency gastric electrical stimulation for gastroparesis. J. Gastroenterol. Hepatol. 2012, 27, 1017–1026. [Google Scholar] [CrossRef] [Green Version]
- Ducrotte, P.; Coffin, B.; Bonaz, B.; Fontaine, P.; Varannes, S.B.D.; Zerbib, F.; Caiazzo, R.; Grimaud, J.C.; Mion, F.; Hadjadj, S.; et al. Gastric Electrical Stimulation Reduces Refractory Vomiting in a Randomized Crossover Trial. Gastroenterology 2020, 158, 506–514.e2. [Google Scholar] [CrossRef] [Green Version]
- Angeli, T.R.; Du, P.; Midgley, D.; Paskaranandavadivel, N.; Sathar, S.; Lahr, C.; Abell, T.L.; Cheng, L.K.; O’Grady, G. Acute Slow Wave Responses to High-Frequency Gastric Electrical Stimulation in Patients with Gastroparesis Defined by High-Resolution Mapping. Neuromodulation Technol. Neural Interface 2016, 19, 864–871. [Google Scholar] [CrossRef] [Green Version]
- McCallum, R.; Dusing, R.W.; Sarosiek, I.; Cocjin, J.; Forster, J.; Lin, Z. Mechanisms of symptomatic improvement after gastric electrical stimulation in gastroparetic patients. Neurogastroenterol. Motil. 2010, 22, 161-e51. [Google Scholar] [CrossRef]
- McCallum, R.W.; Chen, J.D.Z.; Lin, Z.; Schirmer, B.D.; Williams, R.D.; Ross, R.A. Gastric pacing improves emptying and symptoms in patients with gastroparesis. Gastroenterology 1998, 114, 456–461. [Google Scholar] [CrossRef]
- Lin, Z.; Sarosiek, I.; Forster, J.; Ross, R.A.; Chen, J.D.Z.; McCallum, R. Two-channel gastric pacing in patients with diabetic gastroparesis. Neurogastroenterol. Motil. 2011, 23, 912-e396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Grady, G.; Du, P.; Lammers, W.J.E.P.; Egbuji, J.U.; Mithraratne, P.; Chen, J.D.Z.; Cheng, L.K.; Windsor, J.A.; Pullan, A.J. High-resolution entrainment mapping of gastric pacing: A new analytical tool. Am. J. Physiol. Liver Physiol. 2010, 298, G314–G321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alighaleh, S.; Cheng, L.K.; Angeli, T.R.; Amiri, M.; Sathar, S.; O’Grady, G.; Paskaranandavadivel, N. A Novel Gastric Pacing Device to Modulate Slow Waves and Assessment by High-Resolution Mapping. IEEE Trans. Biomed. Eng. 2019, 66, 2823–2830. [Google Scholar] [CrossRef]
- Liu, S.; Peng, S.; Hou, X.; Ke, M.; Chen, J.D.Z. Transcutaneous electroacupuncture improves dyspeptic symptoms and increases high frequency heart rate variability in patients with functional dyspepsia. Neurogastroenterol. Motil. 2008, 20, 1204–1211. [Google Scholar] [CrossRef]
- Ji, T.; Li, X.; Lin, L.; Jiang, L.; Wang, M.; Zhou, X.; Zhang, R.; Chen, J.D. An Alternative to Current Therapies of Functional Dyspepsia: Self-Administrated Transcutaneous Electroacupuncture Improves Dyspeptic Symptoms. Evid. Based Complement. Altern. Med. 2014, 2014, 832523. [Google Scholar] [CrossRef]
- Brandt, L.J.; Boley, S.J. AGA technical review on intestinal ischemia. Gastroenterology 2000, 118, 954–968. [Google Scholar] [CrossRef]
- Froehlich, J.M.; Patak, M.A.; Von Weymarn, C.; Juli, C.F.; Zollikofer, C.L.; Wentz, K.U. Small bowel motility assessment with magnetic resonance imaging. J. Magn. Reson. Imaging 2005, 21, 370–375. [Google Scholar] [CrossRef]
- Stehling, M.K.; Evans, D.F.; Lamont, G.; Ordidge, R.J.; Howseman, A.M.; Chapman, B.; Coxon, R.; Mansfield, P.; Hardcastle, J.D.; Coupland, R. Gastrointestinal tract: Dynamic MR studies with echo-planar imaging. Radiology 1989, 171, 41–46. [Google Scholar] [CrossRef]
- Lammers, W.J.E.P. Normal and abnormal electrical propagation in the small intestine. Acta Physiol. 2014, 213, 349–359. [Google Scholar] [CrossRef]
- Diamant, N.; Bortoff, A. Nature of the intestinal low-wave frequency gradient. Am. J. Physiol. Content 1969, 216, 301–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christensen, J.; Schedl, H.P.; Clifton, J.A. The small intestinal basic electrical rhythm (slow wave) frequency gradient in normal men and in patients with a variety of diseases. Gastroenterology 1966, 50, 309–315. [Google Scholar] [CrossRef]
- Lammers, W.J.E.P.; Michiels, B.; Voeten, J.; Donck, L.V.; Schuurkes, J.A.J. Mapping slow waves and spikes in chronically instrumented conscious dogs: Automated on-line electrogram analysis. Med. Biol. Eng. Comput. 2008, 46, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Fleckenstein, P. A Probe for Intraluminal Recording of Myoelectric Activity from Multiple Sites in the Human Small Intestine. Scand. J. Gastroenterol. 1978, 13, 767–770. [Google Scholar] [CrossRef]
- Civalero, L.A.; Kantelius, M.; Nilsson, B.Y. Simultaneous Recording of Gastric and Duodenal Electrical Activity. Scand. J. Gastroenterol. 1978, 13, 459–463. [Google Scholar] [CrossRef]
- Brown, B.H.; Smallwood, R.; Duthie, H.L.; Stoddard, C.J. Intestinal smooth muscle electrical potentials recorded from surface electrodes. Med. Biol. Eng. Comput. 1975, 13, 97–103. [Google Scholar] [CrossRef]
- Chen, J.; Schirmer, B.; McCallum, R. Measurement of electrical activity of the human small intestine using surface electrodes. IEEE Trans. Biomed. Eng. 1993, 40, 598–602. [Google Scholar] [CrossRef]
- Ye-Lin, Y.; Garcia-Casado, J.; Martinez-De-Juan, J.L.; Prats-Boluda, G.; Ponce, J.L. The detection of intestinal spike activity on surface electroenterograms. Phys. Med. Biol. 2010, 55, 663–680. [Google Scholar] [CrossRef]
- Prats-Boluda, G.; Garcia-Casado, J.; Martinez-De-Juan, J.L.; Ye-Lin, Y. Active concentric ring electrode for non-invasive detection of intestinal myoelectric signals. Med. Eng. Phys. 2011, 33, 446–455. [Google Scholar] [CrossRef]
- Bradshaw, L.A.; Richards, W.O.; Wikswo, J.P. Volume conductor effects on the spatial resolution of magnetic fields and electric potentials from gastrointestinal electrical activity. Med. Biol. Eng. Comput. 2001, 39, 35–43. [Google Scholar] [CrossRef]
- Somarajan, S.; Muszynski, N.D.; Cheng, L.K.; Bradshaw, L.A.; Naslund, T.C.; Richards, W.O. Noninvasive biomagnetic detection of intestinal slow wave dysrhythmias in chronic mesenteric ischemia. Am. J. Physiol. Liver Physiol. 2015, 309, G52–G58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richter, H.M.; Kelly, K.A. Effect of transection and pacing on human jejunal pacesetter potentials. Gastroenterology 1986, 91, 1380–1385. [Google Scholar] [CrossRef]
- Sawchuk, A.; Nogami, W.; Goto, S.; Yount, J.; Grosfeld, J.; Lohmuller, J.; Grosfeld, M.D. Reverse electrical pacing improves intestinal absorption and transit time. Surgery 1986, 100, 454–460. [Google Scholar] [PubMed]
- Gladen, H.; Kelly, K. Electrical pacing for short bowel syndrome. Surg. Gynecol. Obstet. 1981, 153, 697–700. [Google Scholar]
- Liu, J.; Qiao, X.; Hou, X.; Chen, J.D.Z. Effect of Intestinal Pacing on Small Bowel Transit and Nutrient Absorption in Healthy Volunteers. Obes. Surg. 2008, 19, 196–201. [Google Scholar] [CrossRef]
- Longstreth, G.F.; Thompson, W.G.; Chey, W.D.; Houghton, L.A.; Mearin, F.; Spiller, R.C. Functional Bowel Disorders. Gastroenterology 2006, 130, 1480–1491. [Google Scholar] [CrossRef]
- Buhmann, S.; Kirchhoff, C.; Ladurner, R.; Mussack, T.; Reiser, M.F.; Lienemann, A. Assessment of colonic transit time using MRI: A feasibility study. Eur. Radiol. 2006, 17, 669–674. [Google Scholar] [CrossRef]
- De Jonge, C.S.; Smout, A.J.P.M.; Nederveen, A.J.; Stoker, J. Evaluation of gastrointestinal motility with MRI: Advances, challenges and opportunities. Neurogastroenterol. Motil. 2017, 30, e13257. [Google Scholar] [CrossRef]
- Dinning, P.G. A new understanding of the physiology and pathophysiology of colonic motility? Neurogastroenterol. Motil. 2018, 30, e13395. [Google Scholar] [CrossRef]
- Couturier, D.; Roze, C.; Couturier-Turpin, M.; Debray, C. Electromyography of the Colon in Situ. Gastroenterology 1969, 56, 317–322. [Google Scholar] [CrossRef]
- Duthie, H.L. Electrical activity of gastrointestinal smooth muscle. Gut 1974, 15, 669–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarna, S.; Bardakjian, B.; Waterfall, W.; Lind, J. Human Colonic Electrical Control Activity (EGA). Gastroenterology 1980, 78, 1526–1536. [Google Scholar] [CrossRef]
- Taylor, I.; Duthie, H.L.; Smallwood, R.; Linkens, D. Large bowel myoelectrical activity in man. Gut 1975, 16, 808–814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pezzolla, F.; Riezzo, G.; Maselli, M.; Giorgio, I. Electrical activity recorded from abdominal surface after gastrectomy or colectomy in humans. Gastroenterology 1989, 97, 313–320. [Google Scholar] [CrossRef]
- Erickson, J.C.; Bruce, L.E.; Taylor, A.; Richman, J.; Higgins, C.; Wells, C.I.; O’Grady, G. Electrocolonography: Non-Invasive Detection of Colonic Cyclic Motor Activity from Multielectrode Body Surface Recordings. IEEE Trans. Biomed. Eng. 2019, 67, 1628–1637. [Google Scholar] [CrossRef] [PubMed]
- Snape, W.J.; Carlson, G.M.; Cohen, S. Colonic Myoelectric Activity in the Irritable Bowel Syndrome. Gastroenterology 1976, 70, 326–330. [Google Scholar] [CrossRef]
- Snape, W.J.; Carlson, G.M.; Matarazzo, S.A.; Cohen, S. Evidence that Abnormal Myoelectrical Activity Produces Colonic Motor Dysfunction in the Irritable Bowel Syndrome. Gastroenterology 1977, 72, 383–387. [Google Scholar] [CrossRef]
- Katschinski, M.; Lederer, P.; Ellermann, A.; Ganzleben, R.; Lux, G.; Arnold, R. Myoelectric and Manometric Patterns of Human Rectosigmoid Colon in Irritable Bowel Syndrome and Diverticulosis. Scand. J. Gastroenterol. 1990, 25, 761–768. [Google Scholar] [CrossRef]
- Sarna, S.; Latimer, P.; Campbell, D.; Waterfall, W.E. Effect of stress, meal and neostigmine on rectosigmoid electrical control activity (ECA) in normals and in irritable bowel syndrome patients. Dig. Dis. Sci. 1982, 27, 582–591. [Google Scholar] [CrossRef]
- Bueno, L.; Fioramonti, J.; Ruckebusch, Y.; Frexinos, J.; Coulom, P. Evaluation of colonic myoelectrical activity in health and functional disorders. Gut 1980, 21, 480–485. [Google Scholar] [CrossRef]
- Bassotti, G.; Morelli, A.; Whitehead, W.E. Abnormal rectosigmoid myoelectric response to eating in patients with severe idiopathic constipation (Slow-transit type). Dis. Colon Rectum 1992, 35, 753–756. [Google Scholar] [CrossRef] [PubMed]
- Shafik, A.; Shafik, A.A.; El-Sibai, O.; Mostafa, R.M. Electric Activity of the Colon in Subjects with Constipation Due to Total Colonic Inertia. Arch. Surg. 2003, 138, 1007–1011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bassotti, G.; Villanacci, V.; Maurer, C.; Fisogni, S.; Di Fabio, F.; Cadei, M.; Morelli, A.; Panagiotis, T.; Cathomas, G.; Salerni, B. The role of glial cells and apoptosis of enteric neurones in the neuropathology of intractable slow transit constipation. Gut 2006, 55, 41–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guzman-Negron, J.M.; Goldman, H.B. New Devices and Technologies for the Management of Overactive Bladder. Curr. Urol. Rep. 2017, 18, 94. [Google Scholar] [CrossRef] [PubMed]
- Nordenstam, J.; Boller, A.-M.; Mellgren, A. Sacral Nerve Stimulation in the Treatment of Bowel Disorders. Prog. Neurol. Surg. 2015, 29, 200–212. [Google Scholar] [CrossRef]
- Thaha, M.A.; Abukar, A.A.; Thin, N.N.; Ramsanahie, A.; Knowles, C.H. Sacral nerve stimulation for faecal incontinence and constipation in adults. Cochrane Database Syst. Rev. 2015, 8, CD004464. [Google Scholar] [CrossRef]
- Matzel, K.E. Sacral nerve stimulation for faecal incontinence: Its role in the treatment algorithm. Color. Dis. 2011, 13, 10–14. [Google Scholar] [CrossRef]
- Tan, E.; Ngo, N.-T.; Darzi, A.; Shenouda, M.; Tekkis, P. Meta-analysis: Sacral nerve stimulation versus conservative therapy in the treatment of faecal incontinence. Int. J. Color. Dis. 2011, 26, 275–294. [Google Scholar] [CrossRef]
- SanMiguel, C.P.; Casillas, S.; Senagore, A.; Mintchev, M.P.; Soffer, E. Neural gastrointestinal electrical stimulation enhances colonic motility in a chronic canine model of delayed colonic transit. Neurogastroenterol. Motil. 2006, 18, 647–653. [Google Scholar] [CrossRef]
- Sallam, H.S.; Chen, J.D.Z. Colonic electrical stimulation: Potential use for treatment of delayed colonic transit. Color. Dis. 2013, 15, 244–249. [Google Scholar] [CrossRef]
- Zhang, N.; Huang, Z.; Xu, F.; Xu, Y.; Chen, J.; Yin, J.; Lin, L.; Chen, J.D. Transcutaneous Neuromodulation at Posterior Tibial Nerve and ST36 for Chronic Constipation. Evid. Based Complement. Altern. Med. 2014, 2014, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Singleton, C.; Bakheit, A.M.; Peace, C. The Efficacy of Functional Electrical Stimulation of the Abdominal Muscles in the Treatment of Chronic Constipation in Patients with Multiple Sclerosis: A Pilot Study. Mult. Scler. Int. 2016, 2016, 4860315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Grady, G.; Angeli, T.R.; Paskaranandavadivel, N.; Erickson, J.C.; Wells, C.I.; Gharibans, A.A.; Cheng, L.K.; Du, P. Methods for High-Resolution Electrical Mapping in the Gastrointestinal Tract. IEEE Rev. Biomed. Eng. 2018, 12, 287–302. [Google Scholar] [CrossRef] [PubMed]
Technique | Organs | Advantages | Limitations |
---|---|---|---|
Low-resolution serosal recordings | Stomach [58,59,60] Small intestine [103,104] Colon [122,124,125,134] | High SNR Suitable for long term recordings | Invasive No spatial information |
High-resolution serosal recordings | Stomach [63,64,65,66] Small intestine [105] | High SNR Spatial information | Invasive Expensive equipment |
Laparoscopic serosal recordings | Stomach [69,70,71] Small intestine [69] | High SNR Reduced invasiveness | Limited coverage |
Mucosal/intraluminal recordings | Stomach [72,73,74] Small intestine [106,107] Colon [122,125,128,129,130,131,132,133] | Minimally invasive | Low SNR |
Cutaneous electrical recordings | Oropharynx and Esophagus (sEMG [25,26], EEG [29,30,31,32]) Stomach (EGG) [75,76,77] Small intestine (EENG) [108,109,110] Colon (EColG) [125,126,127] | Non-invasive Suitable for long term recordings Cheap and portable equipment | Low SNR Indirect measurement |
Cutaneous magnetic recordings | Oropharynx and Esophagus (MEG) [33,34] Stomach (MGG) [78,79,80,81,82] Small intestine (MENG) [79,113] | Non-invasive Non-contact Higher SNR than cutaneous electrical recordings | Large and expensive equipment Indirect measurement |
Technique | Target Organs | Description | Therapeutic Targets |
---|---|---|---|
Serosal pacing | Stomach [93,94,95,96] | Low-frequency, high-energy direct stimulation | Gastroparesis |
Serosal stimulation | Stomach [84,85,86,87,88,89,90] Small intestine [84,114,115,116,117] Colon [141,142] | High-frequency, direct stimulation | Gastroparesis Chronic unexplained nausea and vomiting |
Transcutaneous electrical stimulation | Stomach [97,98] Colon [143,144] | High-frequency, indirect stimulation | Functional dyspepsia Chronic constipation Fecal incontinence Irritable bowel syndrome |
Sacral nerve stimulation | Colon [136,137,138,139,140] | High-frequency, nerve stimulation | Chronic constipation Fecal incontinence Irritable bowel syndrome |
Biofeedback/Neurofeedback | Oropharynx and Esophagus (EMG, EEG, MEG) [42,43,44,45] | Classification of muscular/neural activity for functional feedback | Dysphagia |
Pharyngeal electrical stimulation | Oropharynx and Esophagus [46,47] | High-frequency, direct stimulation | Dysphagia |
Neuromuscular electrical stimulation | Oropharynx and Esophagus [48,49] | High-frequency, direct or indirect stimulation | Dysphagia |
Transcranial (direct current or magnetic) stimulation | Oropharynx and Esophagus [50,51] | High- and low-frequency stimulation to the brain | Dysphagia |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avci, R.; Miller, K.J.W.; Paskaranandavadivel, N.; Bradshaw, L.A.; Huckabee, M.-L.; Cheng, L.K. Bioelectrical Signals for the Diagnosis and Therapy of Functional Gastrointestinal Disorders. Appl. Sci. 2020, 10, 8102. https://doi.org/10.3390/app10228102
Avci R, Miller KJW, Paskaranandavadivel N, Bradshaw LA, Huckabee M-L, Cheng LK. Bioelectrical Signals for the Diagnosis and Therapy of Functional Gastrointestinal Disorders. Applied Sciences. 2020; 10(22):8102. https://doi.org/10.3390/app10228102
Chicago/Turabian StyleAvci, Recep, Kiara J.W. Miller, Niranchan Paskaranandavadivel, Leonard A. Bradshaw, Maggie-Lee Huckabee, and Leo K. Cheng. 2020. "Bioelectrical Signals for the Diagnosis and Therapy of Functional Gastrointestinal Disorders" Applied Sciences 10, no. 22: 8102. https://doi.org/10.3390/app10228102
APA StyleAvci, R., Miller, K. J. W., Paskaranandavadivel, N., Bradshaw, L. A., Huckabee, M.-L., & Cheng, L. K. (2020). Bioelectrical Signals for the Diagnosis and Therapy of Functional Gastrointestinal Disorders. Applied Sciences, 10(22), 8102. https://doi.org/10.3390/app10228102