Susceptibility to Head Injury during Backward Fall with Side Aligning of the Body
Abstract
:1. Introduction
2. Biomechanical Analysis of Backward Fall Techniques
3. Materials and Methods
3.1. Research Method
3.2. Research Material
3.3. Statistical Methods
4. Results
5. Discussion
6. Conclusions
Funding
Conflicts of Interest
References
- Yoshida, S. A Global Report on Falls Prevention. Epidemiology of Falls Geneva: World Health Organization. 2007. Available online: https://www.who.int/ageing/projects/1.Epidemiologyoffallsinolderage.pdf (accessed on 28 October 2020).
- World Health Organization. Violence and Injury Prevention and Disability. 2020. Available online: https://www.who.int/violence_injury_prevention/other_injury/falls/en/ (accessed on 28 October 2020).
- Hsu, I.-L.; Li, C.-Y.; Chu, D.-C.; Chien, L.-C. An Epidemiological Analysis of Head Injuries in Taiwan. Int. J. Environ. Res. Public. Health 2018, 15, 2457. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Peng, X.; Guo, Z. Biomechanical analysis of C4-C6 spine segment considering anisotropy of annulus fibrosus. Biomed. Tech. 2013, 58, 343–351. [Google Scholar] [CrossRef]
- Montemurro, N.; Perrini, P.; Mangini, V.; Galli, M.; Papini, A. The Y-shaped trabecular bone structure in the odontoid process of the axis: A CT scan study in 54 healthy subjects and biomechanical considerations. J. Neurosurg. Spine 2019, 1, 1–8. [Google Scholar] [CrossRef]
- Mroczkowski, A.; Mosler, D. Diagnosis of Motor Habits during Backward Fall with Usage of Rotating Training Simulator. In Sport and Exercise Science; Merc, M., Ed.; London InTechOpen Limited: London, UK, 2018; ISBN 978-953-51-3794-8. [Google Scholar]
- Kalina, R.M.; Barczyński, B.J. EKO-AGRO-FITNESS original author continuous program of health-oriented and ecological education in the family, among friends or individually implemented—The premises and assumptions. Arch. Budo 2010, 6, 179–184. [Google Scholar]
- Mroczkowski, A. Motor safety of a man during a fall. Arch. Budo 2015, 11, 293–303. [Google Scholar]
- Simpson, J.M. Elderly People at Risk of Fall The Role of Muscle Weakness. Physiotherapy 1993, 79, 831–835. [Google Scholar] [CrossRef]
- American Geriatrics Society; Geriatrics Society; American Academy of Orthopaedic Surgeons Panel on Falls Prevention. Guideline for the Prevention of Falls in Older Persons. J. Am. Geriatr. Soc. 2001, 49, 664–672. [Google Scholar] [CrossRef]
- Kallin, K.; Jensen, J.; Olsson, L.L.; Nyberg, L.; Gustafson, Y. Why the elderly fall in residential care facilities, and suggested remedies. J. Fam. Pract. 2004, 53, 41–52. [Google Scholar] [PubMed]
- Bhatt, T.; Pai, Y.C. Generalization of Gait Adaptation for Fall Prevention: From Moveable Platform to Slippery Floor. J. Neurophysiol. 2009, 101, 948–957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Owings, T.M.; Pavol, M.J.; Grabiner, M.D. Mechanisms of failed recovery following postural perturbations on a motorized treadmill mimic those associated with an actual forward trip. Clin. Biomech. 2001, 16, 813–819. [Google Scholar] [CrossRef]
- Grabiner, M.D.; Donovan, S.; Bareither, M.L.; Marone, J.R.; Hamstra-Wright, K.; Gatts, S.; Troy, K.L. Trunk kinematics and fall risk of older adults: Translating biomechanical results to the clinic. J. Electromyogr. Kinesiol. 2008, 18, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Kalina, R.M.; Barczyński, B.J.; Klukowski, K.; Langfort, L.; Gasienica-Walczak, B. The method to evaluate the susceptibility to injuries during the fall – validation procedure of the specific motor test. Arch. Budo 2011, 7, 201–215. [Google Scholar]
- Toronjo-Hornillo, L.; DelCastillo-Andrés, Ó.; Campos-Mesa, M.; Díaz Bernier, V.; Zagalaz Sánchez, M. Effect of the Safe Fall Programme on Children’s Health and Safety: Dealing Proactively with Backward Falls in Physical Education Classes. Sustainability 2018, 10, 1168. [Google Scholar] [CrossRef] [Green Version]
- DelCastillo-Andrés, Ó.; Toronjo-Hornillo, L.; Rodríguez-López, M.; Castañeda-Vázquez, C.; Campos-Mesa, M. Children’s Improvement of a Motor Response during Backward Falls through the Implementation of a Safe Fall Program. Int. J. Environ. Res. Public Health 2018, 15, 2669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castillo-Andrés, O.D.; Toronjo-Hornillo, L.; Moya-Martínez, I.; Campos-Mesa, M. Propuesta de un programa de prevención de lesiones en voleibol femenino infantil y cadete. SPORT TK Revista Eur. Am. Ciencias Deporte 2019, 7–12. [Google Scholar] [CrossRef]
- Tohei, K. This Is Aikido, with Mind and Body Coordinated, 6th ed.; Japan Pubns: Tokyo, Japan, 1978; ISBN 978-0-87040-346-0. [Google Scholar]
- Momola, I.; Cynarski, W.J. Safe falls in the lessons of physical education. Ido Mov. Cult. J. Martial Arts Anthropol. 2006, 124–131. [Google Scholar]
- Mroczkowski, A. Rotating training simulator—An apparatus used for determining the moment of inertia, assisting learning various motor activities during rotational movements and simulating falls imposed by internal force. Arch. Budo Sci. Martial Arts Extreme Sports 2014, 10, 69–74. [Google Scholar]
- Mroczkowski, A. Factors putting the head at the risk of injury during backward fall. Ido Mov. Cult. J. Martial Arts Anthropol. 2020, 21. in press. [Google Scholar]
- Available online: https://www.youtube.com/watch?v=nGU0ltWTWDo/ (accessed on 28 October 2020).
- Available online: http://smaes.archbudo.com/page/display/id/11/title/relative-immobility/ (accessed on 28 October 2020).
- Egol, K.A.; Koval, K.J.; Zuckerman, J.D. Handbook of Fractures; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2010. [Google Scholar]
- Feldman, F.; Robinovitch, S.N. Reducing hip fracture risk during sideways falls: Evidence in young adults of the protective effects of impact to the hands and stepping. J. Biomech. 2007, 40, 2612–2618. [Google Scholar] [CrossRef]
- Cynarski, W.J.; Sieber, L.; Szajna, G. Martial arts in physical culture. Ido Mov. Cult. J. Martial Arts Anthropol. 2014, 14, 39–45. [Google Scholar]
- Boguszewski, D.; Kerbaum, K. Judo training as a means of reducing susceptibility to injury during falls. Pol. J. Sport Med. 2011, 27, 205–212. [Google Scholar] [CrossRef]
- Boguszewski, D.; Adamczyk, J.G.; Kerbaum, K.; Antoniak, B.; Obszyńska-Litwiniec, A.; Białoszewski, D. Susceptibility To Injury During Falls In Women Practising Combat Sports And Martial Arts. Pol. J. Sport Tour. 2015, 22, 15–19. [Google Scholar] [CrossRef] [Green Version]
- Mroczkowski, A. Susceptibility to fall injury in students of Physical Education practising handball. Arch. Budo Sci. Martial Arts Extreme Sports 2018, 14, 109–115. [Google Scholar]
- Reguli, Z.; Senkyr, J.; Vit, M. Questioning the Concept of General Falling Techniques, 1st World Congress on Health and Martial Arts in Interdisciplinary Approach, HMA 2015; Kalina, R.M., Ed.; Archives of Budo: Czestochowa, Poland, 2015; pp. 63–67. [Google Scholar]
- Mroczkowski, A.; Hes, B. Motor safety during trampolining. Arch. Budo Sci. Martial Arts Extreme Sports 2015, 11, 57–64. [Google Scholar]
- Fehlings, M.G.; Tetreault, L.; Nater, A.; Choma, T.; Harrop, J.; Mroz, T.; Santaguida, C.; Smith, J.S. The Aging of the Global Population: The Changing Epidemiology of Disease and Spinal Disorders. Neurosurgery 2015, 77, S1–S5. [Google Scholar] [CrossRef]
Number of Mistakes | % | Probabilities | |||||||
---|---|---|---|---|---|---|---|---|---|
Velocities | 1 | 2 | 3 | 1 | 2 | 3 | 1 z 2 | 1 z 3 | 2 z 3 |
IFT | 12 | 19 | 25 | 37.5 | 59.4 | 78.1 | 0.1 | 0.0010 | 0.1056 |
FFT | 6 | 13 | 21 | 18.8 | 40.6 | 65.6 | 0.1 | 0.0001 | 0.0451 |
Number of Mistakes | % | Probabilities | |||||||
---|---|---|---|---|---|---|---|---|---|
Velocities | 1 | 2 | 3 | 1 | 2 | 3 | 1 z 2 | 1 z 3 | 2 z 3 |
IFT | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 1 | 1 | 1 |
FFT | 0 | 1 | 0 | 0.0 | 4.0 | 0.0 | 0.3124 | 1 | 0.3124 |
A n = 32 | % Mistakes | Probabilities | |
---|---|---|---|
Velocities | IFT | FFT | p |
1 | 37.5 | 18.8 | 0.0476 |
2 | 59.4 | 40.6 | 0.0668 |
3 | 78.1 | 65.6 | 0.1331 |
Bn= 25 | % Mistakes | ||
Velocities | IFT | FFT | p |
1 | 0 | 0 | 1 |
2 | 0 | 4.0 | 0.1562 |
3 | 0 | 0 | 1 |
1-A | 1-B | p | 2-A | 2-B | p | 3-A | 3-B | p | |
---|---|---|---|---|---|---|---|---|---|
IFT | 37.5 | 0 | 0.0006 | 59.4 | 0 | 0.0000 | 78.1 | 0 | 0.0000 |
FFT | 18.8 | 0 | 0.0221 | 40.6 | 4 | 0.0014 | 65.6 | 0 | 0.0000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mroczkowski, A. Susceptibility to Head Injury during Backward Fall with Side Aligning of the Body. Appl. Sci. 2020, 10, 8239. https://doi.org/10.3390/app10228239
Mroczkowski A. Susceptibility to Head Injury during Backward Fall with Side Aligning of the Body. Applied Sciences. 2020; 10(22):8239. https://doi.org/10.3390/app10228239
Chicago/Turabian StyleMroczkowski, Andrzej. 2020. "Susceptibility to Head Injury during Backward Fall with Side Aligning of the Body" Applied Sciences 10, no. 22: 8239. https://doi.org/10.3390/app10228239
APA StyleMroczkowski, A. (2020). Susceptibility to Head Injury during Backward Fall with Side Aligning of the Body. Applied Sciences, 10(22), 8239. https://doi.org/10.3390/app10228239