Assessing the Performance of Different Grains in Gluten-Free Bread Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Proximate Compositions
2.3. Physical Properties
2.4. Bread-Making Procedure
2.5. Breads Characterization
2.6. Statistical Analysis
3. Results and Discussion
3.1. Proximate Composition of Flours
3.2. Physical Properties of Flours
3.3. Breads Characterization
3.4. Antioxidant Activity of the Breads
3.5. Starch Properties of Breads
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Elgeti, D.; Nordlohne, S.D.; Foste, M.; Besl, M.; Linden, M.H.; Heinz, V.; Jekle, M.; Becker, T. Volume and texture improvement of gluten-free bread using quinoa white flour. J. Cereal Sci. 2014, 59, 41–47. [Google Scholar] [CrossRef]
- Taylor, J.R.N.; Schober, T.J.; Bean, S.R. Novel food and non-food uses for sorghum and millets. J. Cereal Sci. 2006, 44, 252–271. [Google Scholar] [CrossRef]
- Xu, X.; Luo, Z.; Yang, Q.; Xiao, Z.; Lu, X. Effect of quinoa flour on baking performance, antioxidant properties and digestibility of wheat bread. Food Chem. 2019, 294, 87–95. [Google Scholar] [CrossRef]
- Bazile, D.; Bertero, H.D.; Nieto, C. State of the Art Report on Quinoa around the World in 2013; FAO, CIRAD: Santiago, Chile, 2015; p. 603. [Google Scholar]
- Ruiz, K.B.; Biondi, S.; Oses, R.; Acuña-Rodríguez, I.S.; Antognoni, F.; Martinez-Mosqueira, E.A.; Coulibaly, A.; Canahua-Murillo, A.; Pinto, M.; Zurita, A.; et al. Quinoa biodiversity and sustainability for food security under climate change. A review. Agron. Sustain. Dev. 2014, 34, 349–359. [Google Scholar] [CrossRef] [Green Version]
- Collar, C.; Angioloni, A. Pseudocereals and teff in complex breadmaking matrices: Impact on lipid dynamics. J. Cereal Sci. 2014, 59, 145–154. [Google Scholar] [CrossRef] [Green Version]
- Vega-Galvez, A.; Miranda, M.; Vergara, J.; Uribe, E.; Puente, L.; Martinez, E.A. Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd), an ancient Andean grain: A review. J. Sci. Food Agric. 2010, 90, 2541–2547. [Google Scholar] [CrossRef] [PubMed]
- Srichuwong, S.; Curti, D.; Austin, S.; King, R.; Lamothe, L.; Hernandez, H.G. Physicochemical properties and starch digestibility of whole grain sorghums, millet, quinoa and amaranth flours, as affected by starch and non-starch constituents. Food Chem. 2017, 233, 1–10. [Google Scholar] [CrossRef]
- Navruz-Varli, S.; Sanlier, N. Nutritional and health benefits of quinoa (Chenopodium quinoa Willd). J. Cereal Sci. 2016, 69, 371–376. [Google Scholar] [CrossRef]
- Pereira, E.; Encina-Zelada, C.; Barrosa, L.; Gonzales-Barrona, U.; Cadaveza, V.; Ferreira, I. Chemical and nutritional characterization of Chenopodium quinoa Willd (quinoa) grains: A good alternative to nutritious food. Food Chem. 2019, 280, 110–114. [Google Scholar] [CrossRef] [Green Version]
- Vidueiros, S.M.; Curti, R.N.; Dyner, L.M.; Binaghi, M.J.; Peterson, G.; Bertero, H.D.; Pallaro, A.N. Diversity and interrelationships in nutritional traits in cultivated quinoa (Chenopodium quinoa Willd.) from Northwest Argentina. J. Cereal Sci. 2015, 62, 87–93. [Google Scholar] [CrossRef]
- Miranda, M.; Vega-Galvez, A.; Lopez, J.; Parada, G.; Sanders, M.; Aranda, M.; Uribe, E.; Di Scala, K. Impact of air-drying temperature on nutritional properties, total phenolic content and antioxidant capacity of quinoa seeds (Chenopodium quinoa Willd.). Ind. Crop. Prod. 2010, 32, 258–263. [Google Scholar] [CrossRef]
- Pellegrini, M.; Gonzalesb, R.L.; Riccia, A.; Fontechac, J.; Lopez, J.F.; Alvarez, J.A.P.; Martos, M.V. Chemical, fatty acid, polyphenolic profile, techno-functional and antioxidant properties of flours obtained from quinoa (Chenopodium quinoa Willd) seeds. Ind. Crop. Prod. 2018, 111, 38–46. [Google Scholar] [CrossRef]
- Khan, I.; Yousif, A.; Johnson, S.K.; Gamlath, S. Effect of sorghum flour addition on resistant starch content, phenolic profile and antioxidant capacity of durum wheat pasta. Food Res. Int. 2013, 54, 578–586. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekara, A.; Shahidi, F. Content of insoluble bound phenolics in millets and their contribution to antioxidant capacity. J. Agric. Food Chem. 2010, 58, 6706–6714. [Google Scholar] [CrossRef]
- Ragaee, S.; Abdel-Aal, E.-S.M.; Noaman, M. Antioxidant activity and nutrient composition of selected cereals for food use. Food Chem. 2006, 98, 32–38. [Google Scholar] [CrossRef]
- Yousif, A.; Nhepera, D.; Johnson, S. Influence of sorghum flour addition on flat bread in vitro starch digestibility, antioxidant capacity and consumer acceptability. Food Chem. 2012, 134, 880–887. [Google Scholar] [CrossRef]
- Nascimento, A.C.; Mota, C.; Coelho, I.; Gueifao, S.; Santos, M.; Matos, A.S.; Gimenez, A.; Lobo, M.; Samman, N.; Castanheira, I. Characterisation of nutrient profile of quinoa (Chenopodium quinoa), amaranth (Amaranthus caudatus), and purple corn (Zea mays L.) consumed in the North of Argentina: Proximates, minerals and trace elements. Food Chem. 2014, 148, 420–426. [Google Scholar] [CrossRef]
- ASRO. Romanian Standards Catalog for Cereal and Milling Products Analysis; SR ISO 712:2005, SR 91:2007 and SR ISO 2171/2002; ASRO: Bucharest, Romania, 2008. [Google Scholar]
- AACC International. Approved Methods of Analysis, Methods 46–11.02, 76–31.01 and 32–40.01, 11th ed.; American Association of Cereal Chemists International: St. Paul, MN, USA, 2000. [Google Scholar]
- Asp, N.G.; Johansson, C.G.; Hallmer, H.; Siljestrom, M. Rapid enzymatic assay of insoluble and soluble dietary fiber. J. Agric. Food Chem. 1983, 31, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Gibson, T.S.; Solah, V.A.; McCleary, B.V. A procedure to measure amylose in cereal starches and flours with concanavalin A. J. Cereal Sci. 1997, 25, 111–119. [Google Scholar] [CrossRef]
- Godon, B.; Wilhm, C. Primary Cereal Processing a Comprehensive Sourcebook; VCH: New York, NY, USA, 1994. [Google Scholar]
- Banu, I.; Stoenescu, G.; Ionescu, V.; Aprodu, I. Physicochemical and rheological analysis of flour mill streams. Cereal Chem. J. 2010, 87, 112–117. [Google Scholar]
- Aprodu, I.; Banu, I. Antioxidant properties of wheat mill streams. J. Cereal Sci. 2012, 56, 189–195. [Google Scholar] [CrossRef]
- Miao, M.; Jiang, B.; Zhang, T.; Jin, Z.; Mu, W. Impact of mild acid hydrolysis on structure and digestion properties of waxy maize starch. Food Chem. 2011, 126, 506–513. [Google Scholar] [CrossRef]
- Fairbanks, D.J.; Burgener, K.W.; Robison, L.R.; Andersen, W.R.; Ballon, E. Electrophoretic characterization of quinoa seed proteins. Plant Breed. 1990, 104, 190–195. [Google Scholar] [CrossRef]
- Mokrane, H.; Amoura, H.; Belhaneche-Bensemra, N.; Courtin, C.M.; Delcour, J.A.; Nadjemi, B. Assessment of Algerian sorghum protein quality [Sorghum bicolor (L.) Moench] using amino acid analysis and in vitro pepsin digestibility. Food Chem. 2010, 121, 719–723. [Google Scholar] [CrossRef]
- Hamaker, B.R.; Bugusu, B.A. In Proceedings of the Overview: Sorghum Proteins and Food Quality, Pretoria, South Africa, 2–4 April 2003.
- United States Department of Agriculture Agricultural Research Service National Nutrient Database for Standard Reference Legacy Release, Basic Report. Available online: https://ndb.nal.usda.gov/ndb/foods/show/20035?fgcd=&manu=&format=&count=&max=25&offset=&sort=default&order=asc&qlookup=QUINOA+CEREAL%2C+UPC%3A+729955573994&ds=&qt=&qp=&qa=&qn=&q=&ing= (accessed on 13 April 2020).
- Devi, P.B.; Vijayabharathi, R.; Sathyabama, S.; Malleshi, N.G.; Priyadarisini, V.B. Health benefits of finger millet (Eleusine coracana L.) polyphenols and dietary fiber: A review. J. Food Sci. Tech. 2014, 51, 1021–1040. [Google Scholar] [CrossRef] [Green Version]
- Kalinova, J.; Moudry, J. Content and quality of protein in proso millet (Panicum miliaceum L.) varieties. Plant Food Hum. Nutr. 2006, 61, 45–49. [Google Scholar] [CrossRef]
- Rooney, L.W. Sorghum and pearl millet lipids. Cereal Chem. 1978, 55, 584–590. [Google Scholar]
- Jan, S.; Ghoroi, C.; Saxena, D.C. Effect of particle size, shape and surface roughness on bulk and shear properties of rice flour. J. Cereal Sci. 2017, 76, 215–221. [Google Scholar] [CrossRef]
- Kurek, M.A.; Karp, S.; Wyrwisz, J.; Niu, Y. Physicochemical properties of dietary fibers extracted from gluten-free sources: Quinoa (Chenopodium quinoa), amaranth (Amaranthus caudatus) and millet (Panicum miliaceum). Food Hydrocoll. 2018, 85, 321–330. [Google Scholar] [CrossRef]
- Lamothe, L.M.; Srichuwong, S.; Reuhs, B.L.; Hamaker, B.R. Quinoa (Chenopodium quinoa W.) and amaranth (Amaranthus caudatus L.) provide dietary fibres high in pectic substances and xyloglucans. Food Chem. 2015, 167, 490–496. [Google Scholar] [CrossRef]
- Lai, V.; Lu, S.; Hsien He, W.; Chen, H.H. Non-starch polysaccharide compositions of rice grains with respect to rice variety and degree of milling. Food Chem. 2006, 101, 1205–1210. [Google Scholar] [CrossRef]
- Chung, H.J.; Liu, Q.; Lee, L.; Wei, D. Relationship between the structure, physicochemical properties and in vitro digestibility of rice starches with different amylose contents. Food Hydrocoll. 2011, 25, 968–975. [Google Scholar] [CrossRef]
- Kraithong, S.; Lee, S.; Rawdkuen, S. Physicochemical and functional properties of Thai organic rice flour. J. Cereal Sci. 2018, 79, 259–266. [Google Scholar] [CrossRef]
- Marston, K.; Khouryieh, H.; Aramouni, F. Effect of heat treatment of sorghum flour on the functional properties of gluten-free bread and cake. LWT-Food Sci. Technol. 2016, 65, 637–644. [Google Scholar] [CrossRef]
- Rosell, C.M. Enzymatic manipulation of gluten-free breads. In Gluten-Free Food Science and Technology; Gallagher, E., Ed.; Wiley-Blackwell: Oxford, UK, 2009; pp. 83–98. [Google Scholar]
- Schober, T.J. Manufacture of gluten-free specialty breads and confectionery products. In Gluten-Free Food Science and Technology; Gallagher, E., Ed.; Wiley-Blackwell: Oxford, UK, 2009; pp. 130–180. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Evans, C.R. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free. Radic. Bio. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Alvarez-Jubete, L.; Wijngaard, H.; Arendt, E.K.; Gallagher, E. Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa buckwheat and wheat as affected by sprouting and baking. Food Chem. 2010, 119, 770–778. [Google Scholar] [CrossRef]
- Jan, K.N.; Panesar, P.S.; Singh, S. Optimization of antioxidant activity, textural and sensory characteristics of gluten-free cookies made from whole Indian quinoa flour. LWT-Food Sci. Technol. 2015, 93, 573–582. [Google Scholar] [CrossRef]
- Lindenmeier, M.; Hofmann, T. Influence of baking conditions and precursor supplementation on the amounts of the antioxidant pronyl-L-lysine in bakery products. J. Agric. Food Chem. 2004, 52, 350–354. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Contreras, J.J.; Zavala-Garcia, F.; Urias-Orona, V.; Martinez-Avila, G.C.; Rojas, R.; Nono-Medina, G. Chromatic, phenolic and antioxidant properties of sorghum bicolor genotypes. Not. Bot. Hort. Agrobot. Cluj-Napoca 2005, 43, 366–370. [Google Scholar] [CrossRef] [Green Version]
- Chethan, S.; Malleshi, N.G. Finger millet polyphenols: Optimization of extraction and the effect of pH on their stability. Food Chem. 2007, 105, 862–870. [Google Scholar] [CrossRef]
- Sreeramulu, D.; Reddy, C.V.K.; Manchala, R. Antioxidant activity of commonly consumed cereals, millets, pulses and legumes in India. Indian J. Biochem. Biophys. 2009, 46, 112–115. [Google Scholar]
- Aloisi, I.; Parrotta, L.; Ruiz, K.B.; Landi, C.; Bini, L.; Cai, G.; Biondi, S.; Del Duca, S. New insight into quinoa seed quality under salinity: Changes in proteomic and amino acid profiles, phenolic content, and antioxidant activity of protein extracts. Front. Plant Sci. 2016, 7, 656. [Google Scholar] [CrossRef] [Green Version]
- De la Hera, E.; Rosell, C.M.; Gomez, M. Effect of water content and flour particle size on gluten-free bread quality and digestibility. Food Chem. 2014, 151, 526–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, J.R.N.; Emmambux, M.N. Developments in our understanding of sorghum polysaccharides and their health benefits. Cereal Chem. J. 2010, 87, 263–271. [Google Scholar] [CrossRef]
- Wong, J.H.; Lau, T.; Cai, N.; Singh, J.; Pedersen, J.F.; Vensel, W.H.; Hurkman, W.J.; Wilson, J.D.; Lemaux, P.G.; Buchanan, B.B. Digestibility of protein and starch from sorghum (Sorghum bicolor) is linked to biochemical and structural features of grain endosperm. J. Cereal Sci. 2009, 49, 73–82. [Google Scholar] [CrossRef]
- Li, G.; Zhu, F. Quinoa starch: Structure, properties, and applications. Carbohydr. Polym 2018, 181, 851–861. [Google Scholar] [CrossRef] [PubMed]
Component | Quinoa Flour | Sorghum Flour | Millet Flour | Rice Flour |
---|---|---|---|---|
Protein, % | 14.05 ± 0.07 | 10.29 ± 0.03 | 11.01 ± 0.06 | 6.18 ± 0.03 |
Fat, % | 5.29 ± 0.06 | 3.17 ± 0.03 | 3.91 ± 0.05 | 2.16 ± 0.03 |
Ash, % | 2.39 ± 0.01 | 1.61 ± 0.01 | 2.70 ± 0.01 | 1.53 ± 0.01 |
Total dietary fiber, % | 9.11 ± 0.08 | 7.42 ± 0.06 | 8.57 ± 0.08 | 4.69 ± 0.06 |
Insoluble dietary fiber, % | 6.74 ± 0.05 | 6.52 ± 0.04 | 7.46 ± 0.05 | 3.72 ± 0.03 |
Soluble dietary fiber, % | 2.36 ± 0.02 | 0.90 ± 0.01 | 1.10 ± 0.01 | 0.97 ± 0.01 |
Starch, % | 58.84 ± 0.07 | 69.63 ± 0.06 | 63.92 ± 0.07 | 74.09 ± 0.05 |
Amylose, % starch | 17.76 ± 0.08 | 23.23 ± 0.10 | 20.36 ± 0.11 | 19.92 ± 0.09 |
Properties | Quinoa Flour | Sorghum Flour | Millet Flour | Rice Flour | |
---|---|---|---|---|---|
Fineness module | 2.31 ± 0.03 | 1.63 ± 0.02 | 1.90 ± 0.02 | 2.85 ± 0.03 | |
- Particles size 500–315 µm, % | 35.9 ± 0.11 | 10.0 ± 0.10 | 18.7 ± 0.10 | 59.5 ± 0.11 | |
- Particles size 315–125 µm, % | 46.0 ± 0.10 | 80.7 ± 0.12 | 74.9 ± 0.12 | 32.7 ± 0.10 | |
- Particles size < 125 µm, % | 18.1 ± 0.09 | 9.3 ± 0.08 | 7.0 ± 0.07 | 7.8 ± 0.05 | |
Damaged starch, % | 4.44 ± 0.05 | 8.17 ± 0.06 | 5.27 ± 0.05 | 3.85 ± 0.05 | |
Color values | L* | 81.46 ± 0.16 | 81.62 ± 0.16 | 83.79 ± 0.29 | 83.89 ± 0.62 |
a* | 1.32 ± 0.05 | 4.49 ± 0.02 | 2.62 ± 0.01 | 0.59 ± 0.01 | |
b* | 15.28 ± 0.12 | 12.45 ± 0.39 | 15.18 ± 1.12 | 15.33 ± 0.06 | |
C* | 15.34 ± 0.43 | 13.23 ± 0.01 | 15.40 ± 0.02 | 15.34 ± 0.02 | |
h° | 56 ± 0.00 | 51 ± 0.00 | 54 ± 0.01 | 57 ± 0.00 |
Physical Properties | Breads Prepared With | |||
---|---|---|---|---|
Quinoa Flour | Sorghum Flour | Millet Flour | Rice Flour | |
Specific volume, cm3/100 g | 192.22 ± 0.12 | 152.35 ± 0.10 | 164.39 ± 0.11 | 181.04 ± 0.12 |
Crumb firmness, N | 10.81 ± 0.14 | 21.47 ± 0.32 | 25.70 ± 0.15 | 13.74 ± 0.23 |
Properties | Breads Prepared With | |||
---|---|---|---|---|
Quinoa Flour | Sorghum Flour | Millet Flour | Rice Flour | |
Total phenol content, mg ferulic acid equiv/100 g d.w. | 398.42 ± 0.15 | 387.16 ± 0.11 | 180.09 ± 0.10 | 70.34 ± 0.10 |
DPPH-radical scavenging activity, % | 32.85 ± 0.11 | 35.01 ± 0.10 | 19.24 ± 0.10 | 10.50 ± 0.11 |
FRAP, µmoli Fe2+/g d.w. | 2.53 ± 0.09 | 3.67 ± 0.09 | 2.06 ± 0.07 | 0.98 ± 0.05 |
TEAC, µmoli Trolox/g d.w. | 19.32 ± 0.12 | 54.51 ± 0.12 | 15.07 ± 0.10 | 6.97 ± 0.10 |
Properties | Breads Prepared With | |||
---|---|---|---|---|
Quinoa Flour | Sorghum Flour | Millet Flour | Rice Flour | |
Resistant starch, % d.w. | 3.28 ± 0.07 | 2.79 ± 0.06 | 1.83 ± 0.05 | 1.40 ± 0.05 |
Rapidly digestible starch, g/100 g starch d.w. | 48.31 ± 0.10 | 60.53 ± 0.10 | 63.26 ± 0.11 | 73.23 ± 0.11 |
Slowly digestible starch, g/100 g starch d.w. | 15.50 ± 0.11 | 11.86 ± 0.10 | 6.51 ± 0.10 | 8.25 ± 0.10 |
Digestible starch, g/100 g starch d.w. | 63.81 ± 0.11 | 72.39 ± 0.11 | 69.77 ± 0.11 | 81.48 ± 0.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banu, I.; Aprodu, I. Assessing the Performance of Different Grains in Gluten-Free Bread Applications. Appl. Sci. 2020, 10, 8772. https://doi.org/10.3390/app10248772
Banu I, Aprodu I. Assessing the Performance of Different Grains in Gluten-Free Bread Applications. Applied Sciences. 2020; 10(24):8772. https://doi.org/10.3390/app10248772
Chicago/Turabian StyleBanu, Iuliana, and Iuliana Aprodu. 2020. "Assessing the Performance of Different Grains in Gluten-Free Bread Applications" Applied Sciences 10, no. 24: 8772. https://doi.org/10.3390/app10248772
APA StyleBanu, I., & Aprodu, I. (2020). Assessing the Performance of Different Grains in Gluten-Free Bread Applications. Applied Sciences, 10(24), 8772. https://doi.org/10.3390/app10248772