Special Issue on “Machining Dynamics and Parameters Process Optimization”
1. Introduction and Scope
2. Contributions
2.1. Dynamic Characterization of Machine Tools and Stability Analysis
2.2. Devices and Experimental Techniques
2.3. Monitoring Systems and Machining Optimization
Funding
Acknowledgments
Conflicts of Interest
References
- Alvarez, J.; Zatarain, M.; Barrenetxea, D.; Marquinez, J.I.; Izquierdo, B. Implicit Subspace Iteration to Improve the Stability Analysis in Grinding Processes. Appl. Sci. 2020, 10, 8203. [Google Scholar] [CrossRef]
- Sosa, J.L.; Olvera-Trejo, D.; Urbikain, G.; Martinez-Romero, O.; Elías-Zúñiga, A.; Lacalle, L.N.L. Uncharted Stable Peninsula for Multivariable Milling Tools by High-Order Homotopy Perturbation Method. Appl. Sci. 2020, 10, 7869. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, W.; Dong, X. Natural Frequency Prediction Method for 6R Machining Industrial Robot. Appl. Sci. 2020, 10, 8138. [Google Scholar] [CrossRef]
- Puma-Araujo, S.D.; Olvera-Trejo, D.; Martínez-Romero, O.; Urbikain, G.; Elías-Zúñiga, A.; López de Lacalle, L.N. Semi-Active Magnetorheological Damper Device for Chatter Mitigation during Milling of Thin-Floor Components. Appl. Sci. 2020, 10, 5313. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, S.; Qiu, L.; Liu, X.; Wang, Z.; Wang, Y. Double B-Spline Curve-Fitting and Synchronization-Integrated Feedrate Scheduling Method for Five-Axis Linear-Segment Toolpath. Appl. Sci. 2020, 10, 3158. [Google Scholar] [CrossRef]
- Yu, B.-F.; Chen, J.-S. Development of an Analyzing and Tuning Methodology for the CNC Parameters Based on Machining Performance. Appl. Sci. 2020, 10, 2702. [Google Scholar] [CrossRef] [Green Version]
- Fang, Y.; Wang, L.; Yang, J.; Li, J. An Accurate and Efficient Approach to Calculating the Wheel Location and Orientation for CNC Flute-Grinding. Appl. Sci. 2020, 10, 4223. [Google Scholar] [CrossRef]
- Grossi, N.; Scippa, A.; Venturini, G.; Campatelli, G. Process Parameters Optimization of Thin-Wall Machining for Wire Arc Additive Manufactured Parts. Appl. Sci. 2020, 10, 7575. [Google Scholar] [CrossRef]
- Mamledesai, H.; Soriano, M.A.; Ahmad, R. A Qualitative Tool Condition Monitoring Framework Using Convolution Neural Network and Transfer Learning. Appl. Sci. 2020, 10, 7298. [Google Scholar] [CrossRef]
- Zhang, X.; Han, C.; Luo, M.; Zhang, D. Tool Wear Monitoring for Complex Part Milling Based on Deep Learning. Appl. Sci. 2020, 10, 6916. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urbikain, G.; Olvera-Trejo, D. Special Issue on “Machining Dynamics and Parameters Process Optimization”. Appl. Sci. 2020, 10, 8908. https://doi.org/10.3390/app10248908
Urbikain G, Olvera-Trejo D. Special Issue on “Machining Dynamics and Parameters Process Optimization”. Applied Sciences. 2020; 10(24):8908. https://doi.org/10.3390/app10248908
Chicago/Turabian StyleUrbikain, Gorka, and Daniel Olvera-Trejo. 2020. "Special Issue on “Machining Dynamics and Parameters Process Optimization”" Applied Sciences 10, no. 24: 8908. https://doi.org/10.3390/app10248908
APA StyleUrbikain, G., & Olvera-Trejo, D. (2020). Special Issue on “Machining Dynamics and Parameters Process Optimization”. Applied Sciences, 10(24), 8908. https://doi.org/10.3390/app10248908