Kinetics of Hyaluronidase Inhibition by Rice (Oryza sativa L.) Protein Hydrolysate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rice Protein Hydrolysate Preparation
2.1.1. Gel Electrophoresis for Determination of Protein Molecular Weight
2.1.2. Sample Amino Acid Profiles
2.2. Hyaluronidase Inhibitory Activity Analysis
2.3. Kinetic Properties of Rice Protein Hydrolysate
3. Results
3.1. Molecular Weights and Amino Acid Profiles of Rice Protein Hydrolysate
3.2. Hyaluronidase Inhibition Ability of Rice Protein Hydrolysate
3.3. Hyaluronidase Inhibitory Activity Kinetics
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sloan, A.E. The top ten functional food trends. Food Technol. 2014, 54, 33–62. [Google Scholar]
- Clemente, A. Enzymatic protein hydrolysates in human nutrition. Trends Food Sci. Technol. 2000, 11, 254–262. [Google Scholar] [CrossRef]
- Kannan, A.; Hettiarachchy, N.; Marshall, M. Food Proteins and Peptides as Bioactive Agents. Food Proteins Pept. 2011, 5, 1–28. [Google Scholar] [CrossRef]
- Adjonu, R.; Doran, G.; Torley, P.; Agboola, S. Screening of whey protein isolate hydrolysates for their dual functionality: Influence of heat pre-treatment and enzyme specificity. Food Chem. 2013, 136, 1435–1443. [Google Scholar] [CrossRef]
- Korhonen, H.; Pihlanto, A. Bioactive peptides: Production and functionality. Int. Dairy J. 2006, 16, 945–960. [Google Scholar] [CrossRef]
- Kamdem, J.P.; Tsopmo, A. Reactivity of peptides within the food matrix. J. Food Biochem. 2017, 43, e12489. [Google Scholar] [CrossRef] [Green Version]
- Erdmann, K.; Cheung, B.W.Y.; Schröder, H. The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease. J. Nutr. Biochem. 2008, 19, 643–654. [Google Scholar] [CrossRef]
- Tsopmo, A.; Romanowski, A.; Banda, L.; Lavoie, J.-C.; Jenssen, H.; Friel, J.K. Novel anti-oxidative peptides from enzymatic digestion of human milk. Food Chem. 2011, 126, 1138–1143. [Google Scholar] [CrossRef]
- García, M.C.; Puchalska, P.; Esteve, C.; Marina, M. Vegetable foods: A cheap source of proteins and peptides with antihypertensive, antioxidant, and other less occurrence bioactivities. Talanta 2013, 106, 328–349. [Google Scholar] [CrossRef] [PubMed]
- Thamnarathip, P.; Jangchud, K.; Nitisinprasert, S.; Vardhanabhuti, B. Identification of peptide molecular weight from rice bran protein hydrolysate with high antioxidant activity. J. Cereal Sci. 2016, 69, 329–335. [Google Scholar] [CrossRef]
- Sahasrabudhe, A.; Deodhar, M. Anti-hyaluronidase, Anti-elastase Activity of Garcinia indica. Int. J. Bot. 2010, 6, 299–303. [Google Scholar] [CrossRef] [Green Version]
- Satardekar, K.V.; Deodhar, M.A. Anti-ageing ability of Terminalia species with special reference to hyaluronidase, elastase inhibition and collagen synthesis in vitro. Int. J. Pharmacogn. Phytochem. Res. 2010, 23, 30–34. [Google Scholar]
- Schägger, H. Tricine–SDS–PAGE. Nat. Protoc. 2006, 1, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Simpson, R.J.; Neuberger, M.R.; Liu, T.Y. Complete amino acid analysis of proteins from a single hydrolysate. J. Biol. Chem. 1976, 251, 1936–1940. [Google Scholar] [PubMed]
- Chompoo, J.; Upadhyay, A.; Fukuta, M.; Tawata, S. Effect of Alpinia zerumbet components on antioxidant and skin diseases-related enzymes. BMC Complement. Altern. Med. 2012, 12, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.-S.; Chen, H.-J.; Huang, J.-P.; Lee, P.-C.; Tsai, C.-R.; Hsu, T.-F.; Huang, W.-Y. Kinetics of tyrosinase inhibitory activity using Vitis vinifera leaf extracts. BioMed Res. Int. 2017, 2017, 5232680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hemachandran, H.; Anantharaman, A.; Mohan, S.; Mohan, G.; Kumar, D.T.; Dey, D.; Kumar, D.; Dey, P.; Choudhury, A.; Doss, C.G.P.; et al. Unraveling the inhibition mechanism of cyanidin-3-sophoro- side on polyphenol oxidase and its effect on enzymatic browning of apples. Food Chem. 2017, 227, 102–110. [Google Scholar] [CrossRef]
- Padhye, V.W.; Salunkhe, D.K. Extraction and characterization of rice proteins. Cereal Chem. 1979, 56, 389–393. [Google Scholar]
- Chanput, W.; Theerakulkait, C.; Nakai, S. Antioxidative properties of partially purified barley hordein, rice bran protein fractions and their hydrolysates. J. Cereal Sci. 2009, 49, 422–428. [Google Scholar] [CrossRef]
- Tang, S.; Hettiarachchy, N.S.; Horax, R.; Eswaranandam, S. Physicochemical properties and functionality of rice-bran-protein hydrolysate prepared from heat-stabilized defatted rice bran with the aid of enzymes. J. Food Sci. 2003, 68, 152–157. [Google Scholar] [CrossRef]
- Nishida, Y.; Sugahara, S.; Wada, K.; Toyohisa, D.; Tanaka, T.; Ono, M.; Yasuda, S. Inhibitory effects of the ethyl acetate extract from bulbs of Scilla scilloides on lipoxygenase and hyaluronidase activities. Pharm. Biol. 2014, 52, 1351–1357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguilar-Toalá, J.E.; Santiago-López, L.; Peres, C.M.; Peres, C.; Garcia, H.S.; Vallejo-Cordoba, B.; González-Córdova, A.F.; Hernández-Mendoza, A. Assessment of multifunctional activity of bioactive peptides derived from fermented milk by specific Lactobacillus plantarum strains. J. Dairy Sci. 2017, 100, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, H.; Wang, L.; Guo, X.; Wang, X.; Yao, H. Isolation and identification of antioxidative peptides from rice endosperm protein enzymatic hydrolysate by consecutive chromatography and MALDI-TOF/TOF MS/MS. Food Chem. 2010, 119, 226–234. [Google Scholar] [CrossRef]
- Fernandes, F.; Ramalhosa, E.; Pires, P.; Verdial, J.; Valentão, P.; Andrade, P.; Bento, A.; Pereira, J.A. Vitis vinifera leaves towards bioactivity. Ind. Crop. Prod. 2013, 43, 434–440. [Google Scholar] [CrossRef]
- Zhou, J.-R.; Kimura, S.; Nohara, T.; Yokomizo, K. Competitive Inhibition of Mammalian Hyaluronidase by Tomato Saponin, Esculeoside A. Nat. Prod. Commun. 2018, 13, 1461–1463. [Google Scholar] [CrossRef] [Green Version]
- Aguilar-Toalá, J.E.; Liceaga, A.M. Identification of chia seed (Salvia hispanica L.) peptides with enzyme inhibition activity towards skin-aging enzymes. Amino Acids 2020, 52, 1149–1159. [Google Scholar] [CrossRef]
- Chen, J.; Liu, S.; Ye, R.; Cai, G.; Ji, B.; Wu, Y. Angiotensin-I converting enzyme (ACE) inhibitory tripeptides from rice protein hydrolysate: Purification and characterization. J. Funct. Foods 2013, 5, 1684–1692. [Google Scholar] [CrossRef]
- Huang, W.-Y.; Chen, H.-J.; Lin, C.-C.; Chen, C.-S.; Lin, Y.-S. Kinetics Investigation on Mushroom Tyrosinase Inhibition of Proso Millet. J. Chem. 2018, 2018, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Piu’, L.D.; Tassoni, A.; Serrazanetti, D.I.; Ferri, M.; Babini, E.; Tagliazucchi, D.; Gianotti, A. Exploitation of starch industry liquid by-product to produce bioactive peptides from rice hydrolyzed proteins. Food Chem. 2014, 155, 199–206. [Google Scholar] [CrossRef]
- Yan, Q.; Huang, L.-H.; Sun, Q.; Jiang, Z.; Wu, X. Isolation, identification and synthesis of four novel antioxidant peptides from rice residue protein hydrolyzed by multiple proteases. Food Chem. 2015, 179, 290–295. [Google Scholar] [CrossRef]
- Li-Chan, E.C. Bioactive peptides and protein hydrolysates: Research trends and challenges for application as nutraceuticals and functional food ingredients. Curr. Opin. Food Sci. 2015, 1, 28–37. [Google Scholar] [CrossRef] [Green Version]
Amino Acid Profiles | Content in Rice Protein Hydrolysate (mg/100 g) # |
---|---|
Alanine | 193 |
Arginine | 248 |
Aspartic acid | 308 |
Cystine | 52 |
Glutamic acid | 532 |
Glycine | 161 |
Histidine | 77 |
Isoleucine | 113 |
Leucine | 226 |
Lysine | 135 |
Methionine | 13 |
Phenylalanine | 148 |
Proline | 134 |
Serine | 156 |
Threonine | 116 |
Tryptophan | - |
Tyrosine | 167 |
Valine | 180 |
Total amino acids (TAA) | 2960 |
Essential amino acids (EAA) | 893 |
Branched-chain amino acids (BCAA) | 519 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.-J.; Dai, F.-J.; Fan, S.-L.; Huang, Y.-C.; Chau, C.-F.; Lin, Y.-S.; Chen, C.-S. Kinetics of Hyaluronidase Inhibition by Rice (Oryza sativa L.) Protein Hydrolysate. Appl. Sci. 2020, 10, 9087. https://doi.org/10.3390/app10249087
Chen H-J, Dai F-J, Fan S-L, Huang Y-C, Chau C-F, Lin Y-S, Chen C-S. Kinetics of Hyaluronidase Inhibition by Rice (Oryza sativa L.) Protein Hydrolysate. Applied Sciences. 2020; 10(24):9087. https://doi.org/10.3390/app10249087
Chicago/Turabian StyleChen, Hui-Ju, Fan-Jhen Dai, Siao-Ling Fan, Yu-Chun Huang, Chi-Fai Chau, Yung-Sheng Lin, and Chin-Shuh Chen. 2020. "Kinetics of Hyaluronidase Inhibition by Rice (Oryza sativa L.) Protein Hydrolysate" Applied Sciences 10, no. 24: 9087. https://doi.org/10.3390/app10249087
APA StyleChen, H. -J., Dai, F. -J., Fan, S. -L., Huang, Y. -C., Chau, C. -F., Lin, Y. -S., & Chen, C. -S. (2020). Kinetics of Hyaluronidase Inhibition by Rice (Oryza sativa L.) Protein Hydrolysate. Applied Sciences, 10(24), 9087. https://doi.org/10.3390/app10249087