Analysis of Selected Properties of Fruits of Black Chokeberry (Aronia melanocarpa L.) from Organic and Conventional Cultivation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagent and Standard
2.2. Plant Materials
2.3. Dry Matter, Ash Content, Titratable Acidity, Pectin
2.4. Analysis of Antioxidant Activity
2.5. Ultra-Weak Luminescence
2.6. Analysis of Sugars with HPLC-ELSD Method
2.7. Identification and Quantification of Polyphenols by the UPLCPDAMS Method
2.8. Statistical Analysis
3. Results and Discussion
3.1. Antioxidant Activity and Ultra-Weak Luminescence
3.2. Identification of Sugars
3.3. Identification of Polyphenolic Compounds
3.4. Comparison of Phenolic Compounds Found in Black Chokeberry
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Horszwald, A.; Julien, H.; Andlauer, W. Characterisation of Aronia powders obtained by different drying processes. Food Chem. 2013, 141, 2858–2863. [Google Scholar] [CrossRef] [PubMed]
- Chrubasik, C.; Li, G.; Chrubasik, S. The clinical effectiveness of chokeberry: A systematic review. Phytother. Res. 2010, 24, 1107–1114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulling, S.E.; Rawel, H.M. Chokeberry (Aronia melanocarpa)—A review on the characteristic components and potential health effects. Planta Med. 2008, 74, 1625–1635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benvenuti, S.; Pellati, F.; Melegari, M.A.; Bertelli, D. Polyphenols, anthocyanins, ascorbic acid, and radical scavenging activity of Rubus, Ribes, and Aronia. J. Food Sci. 2004, 69, FCT164–FCT169. [Google Scholar] [CrossRef]
- Zheng, W.; Wang, S.Y. Oxygen radical absorbing capacity of phenolics in blueberries, cranberries, chokeberries, and lingonberries. J. Agric. Food Chem. 2003, 51, 502–509. [Google Scholar] [CrossRef]
- Skoczyńska, A.; Jędrychowska, I.; Poręba, R.; Affelska-Jercha, A.; Turczyn, B.; Wojakowska, A.; Andrzejak, R. Influence of chokeberry juice on arterial blood pressure and lipid parameters in men with mild hypercholesterolemia. Pharmacol. Rep. 2007, 59, 177–182. [Google Scholar]
- Valcheva-Kuzmanova, S.V.; Belcheva, A. Current knowledge of Aronia melanocarpa as a medicinal plant. Folia Med. 2006, 48, 11–17. [Google Scholar]
- Santos Buelga, C.; Scalbert, A. Proanthocyanidins and tannin like compounds-nature, occurrence, dietary intake and effects on nutrition and health. J. Sci. Food Agric. 2000, 80, 1094–1117. [Google Scholar] [CrossRef]
- Kazimierczak, R.; Hallmann, E.; Rusaczonek, A.; Rembiałkowska, E. Antioxidant content in black currants from organic and conventional cultivation. Electron. J. Pol. Agric. Univ. Food Sci. Technol. 2008, 11, 28–33. [Google Scholar]
- Cayuela, J.A.; Vidueira, J.M.; Albi, M.A.; Gutiérrez, F. Influence of the ecological cultivation of strawberries (Fragaria × ananassa cv. Chandler) on the quality of the fruit and on their capacity for conservation. J. Agric. Food Chem. 1997, 45, 1736–1740. [Google Scholar] [CrossRef]
- Wojdyło, A.; Oszmiański, J.; Milczarek, M.; Wietrzyk, J. Phenolic profile, antioxidant and antiproliferative activity of black and red currants (Ribes spp.) from organic and conventional cultivation. Int. J. Food Sci. Technol. 2013, 48, 715–726. [Google Scholar] [CrossRef]
- Nakamuraa, K.; Hiramatsub, M. Ultra-weak photon emission from human hand: Influence of temperature and oxygen concentration on emission. J. Photochem. Photobiol. B Biol. 2005, 80, 156–160. [Google Scholar] [CrossRef] [PubMed]
- Laager, F.; Park, S.H.; Yang, J.M.; Song, W.; Soh, K.S. Effects of exercises on biophoton emission of the wrist. Eur. J. Appl. Physiol. 2007, 102, 463–469. [Google Scholar]
- Kiełbasa, P.; Dróżdż, T.; Nawara, P.; Dróżd, M. The use of bio-photons emission for the quality parameterization of food products. Przegląd Elektrotech. 2017, 93, 153–156. [Google Scholar] [CrossRef] [Green Version]
- Oziembłowski, M.; Dróżdż, M.; Kiełbasa, P.; Dróżdż, T.; Gąsiorski, A.; Nawara, P.; Tabor, S. Ultra weak luminescence (USL) as a potential method for evaluating the quality of traditional. Przegląd Elektrotech. 2017, 93, 131–134. [Google Scholar]
- Gałązka-Czarnecka, I.; Korzeniewska, E.; Czarnecki, A.; Sójka, M.; Kiełbasa, P.; Dróżdż, T. Evaluation of quality of eggs from hens kept in caged and free-range systems using traditional methods and ultra-weak luminescence. Appl. Sci. 2019, 9, 2430. [Google Scholar] [CrossRef] [Green Version]
- Gong, Y.; Tiejun Yang, T.; Liang, Y. Integrating ultra weak luminescence properties and multi-scale permutation entropy algorithm to analyze freshness degree of wheat kernel. Optik 2020, 218, 165099. [Google Scholar] [CrossRef]
- Trzyniec, K.; Kiełbasa, P.; Oziembłowski, M.; Dróżdż, M.; Nawara, P.; Posyłek, Z.; Leja, R. Using photons emission to evaluate the quality of apples. Przegląd Elektrotech. 2017, 93, 183–186. [Google Scholar] [CrossRef] [Green Version]
- AOAC International. Official Methods of Analysis of AOAC International, 18th ed.; Horowitz, W., Latimer, G.E., Eds.; AOAC International: Rockville, MD, USA, 2005. [Google Scholar]
- Przetwory Owocowe i Warzywne. Przygotowanie Próbek i Metody Badań Fizykochemicznych. Oznaczenie Kwasowości Ogólnej; Technical Report No. PN-90/A-75101/04 Warszawa.
- Pijanowski, E.; Mrożewski, S.; Horubała, A.; Jarczyk, A. Technologia Produktów Owocowych i Warzywnych; PWRiL: Warsaw, Poland, 1973. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Nawirska-Olszańska, A.; Kita, A.; Biesiada, A.; Sokół-Łętowska, A.; Kucharska, A.Z. Characteristics of antioxidant activity and composition of pumpkin seed oils in 12 cultivars. Food Chem. 2013, 139, 155–161. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing Ability of plasma (FRAP) as a measure of “Antioxidant Power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolniak-Ostek, J. Chemical composition and antioxidant capacity of different anatomical parts of pear (Pyrus communis L.). Food Chem. 2016, 203, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Białek, M.; Rutkowska, J.; Hallmann, E. Black chokeberry (Aronia melanocarpa) as potential component of functional food. Żywność Nauka Technol. Jakość 2012, 6, 21–30. [Google Scholar] [CrossRef]
- Nawirska-Olszańska, A.; Pasławska, M.; Stępień, B.; Maciej Oziembłowski, M.; Sala, K.; Smorowska, A. Effect of vacuum impregnation with apple-pear juice on content of bioactive compounds and antioxidant activity of dried chokeberry fruit. Foods 2020, 9, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skupień, K.; Oszmiański, J. The effect of mineral fertilization on nutritive value and biological activity of chokeberry fruit. Agric. Food Sci. 2007, 16, 46–55. [Google Scholar] [CrossRef] [Green Version]
- Oszmiański, J.; Wojdyło, A. Aronia melanocarpa phenolics and their antioxidant activity. Eur. Food Res. Technol. 2005, 221, 809–813. [Google Scholar] [CrossRef]
- Oszmaiński, J.; Lachowicz, S. Effect of the production of dried fruits and juice from chokeberry (Aronia melanocarpa L.) on the content and antioxidative activity of bioactive compounds. Molecules 2016, 21, 1098. [Google Scholar] [CrossRef]
- Denev, P.; Kratchanova, M.; Petrova, I.; Klisurova, D.; Georgiev, Y.; Ognyanov, M.; Yanakieva, I. Black chokeberry (Aronia melanocarpa (Michx.) Elliot) fruits and functional drinks differ significantly in their chemical composition and antioxidant activity. J. Chem. 2018, 11, 9574587. [Google Scholar] [CrossRef] [Green Version]
- Cebulak, T.; Oszmiański, J.; Kapusta, I.; Lachowicz, S. Effect of UV-C radiation, ultra-sonication electromagnetic field and microwaves on changes in polyphenolic compounds in chokeberry (Aronia melanocarpa). Molecules 2017, 22, 1161. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.E.; Kim, G.S.; Park, S.; Kim, Y.H.; Kim, M.B.; Lee, W.S.; Jeong, S.W.; Lee, S.J.; Jin, J.S.; Shin, S.C.; et al. Determination of chokeberry (Aronia melanocarpa) polyphenol components using liquid chromatography–tandem mass spectrometry: Overall contribution to antioxidant activity. Food Chem. 2014, 146, 1–5. [Google Scholar] [CrossRef]
Variant of Chokeberry | Dry Matter | Ash | Pectins | Titratable Acidity |
---|---|---|---|---|
% | ||||
C 1e | 24.2 ± 1.24 c | 0.82 ± 0.01 b | 0.47 ± 0.01 c | 1.29 ± 0.12 a |
C 2e | 26.1 ± 1.21 b | 0.81 ± 0.01 b | 0.54 ± 0.01 a | 1.21 ± 0.11 b |
C 3e | 24.2 ± 1.14 c | 0.97 ± 0.02 a | 0.50 ± 0.01 b | 1.22 ± 0.11 b |
C 4c | 24.0 ± 1.11 c | 0.61 ± 0.01 d | 0.49 ± 0.02 b | 0.99 ± 0.09 c |
C 5c | 23.8 ± 0.99 d | 0.79 ± 0.04 b,c | 0.46 ± 0.01 d | 0.93 ± 0.09 c |
C 6c | 26.5 ± 1.01 a | 0.73 ± 0.02 c | 0.35 ± 0.01 e | 1.01 ± 0.09 c |
Variant of Chokeberry | ABTS | FRAP | Photon Emission |
---|---|---|---|
µmole/100 g | µmole/100 g | - | |
C 1e | 126.58 ± 2.00 a | 95.53 ± 1.10 a | 416.3 ± 2.84 a |
C 2e | 109.85 ± 8.08 b | 89.12 ± 2.04 b | 402.8 ± 3.11 b |
C 3e | 102.79 ± 3.69 c | 78.99 ± 2.11 c | 398.7 ± 3.00 c |
C 4c | 92.37 ± 2.10 e | 55.05 ± 2.08 e | 352.2 ± 2.45 e |
C 5c | 95.83 ± 1.54 d | 62.19 ± 1.37 d | 367.2 ± 2.78 d |
C 6c | 92.19 ± 3.69 e | 54.99 ± 2.22 e | 349.9 ± 2.29 e |
Variant of Chokeberry | Fructose | Sorbitol | Glucose | Sum |
---|---|---|---|---|
g/100 g FW | ||||
C 1e | 1.54 ± 0.04 a | 1.97 ± 0.03 f | 2.82 ± 0.01 c | 6.33 |
C 2e | 1.41 ± 0.03 b | 3.16 ± 0.01 a | 3.36 ± 0.03 b | 7.93 |
C 3e | 0.85 ± 0.01 f | 2.20 ± 0.02 d | 2.69 ± 0.02 d | 5.75 |
C 4c | 1.16 ± 0.01 d | 2.69 ± 0.01 c | 1.87 ± 0.02 e | 5.73 |
C 5c | 1.01 ± 0.01 e | 2.08 ± 0.01 e | 1.92 ± 0.01 e | 5.01 |
C 6c | 1.30 ± 0.04 c | 2.90 ± 0.02 b | 3.76 ± 0.04 a | 7.96 |
Nr | Compounds | Rt (min) | λmax (nm) | MS | MS-MS |
---|---|---|---|---|---|
1 | Cyanidin-3-hexoside-(epi)catechine | 2.54 | 520 | 737+ | 575/423/287 |
2 | Neochlorogenic acid | 2.57 | 323 | 353 | 191 |
3 | Cyanidin-3-pentoside-(epi)catechine | 2.98 | 520 | 707+ | 557/329/287 |
4 | (+) Catechin | 3.03 | 280 | 289 | |
5 | Cyanidin-3-hexoside-(epi)cat-(epi)cat | 3.15 | 520 | 1025+ | 575/409/287 |
6 | 3-O-p-Coumaroylquinic acid | 3.30 | 310 | 337 | 191 |
7 | Cyanidin-3-O-galctoside | 3.51 | 516 | 449+ | 287 |
8 | Chlorogenic acid | 3.62 | 323 | 353 | 191 |
9 | Cryptochlorogenic acid | 3.71 | 323 | 353 | 191 |
10 | Cyanidin-3-O-glucoside | 3.81 | 517 | 449+ | 287 |
11 | Cyanidin-3-O-arabinoside | 4.03 | 515 | 419+ | 287+ |
12 | Procyanidin B2 | 4.20 | 280 | 577 | 289 |
13 | Cyanidin-3-O-xyloside | 4.68 | 515 | 419+ | 287+ |
14 | (−) Epicatechin | 4.88 | 280 | 289 | |
15 | Quercetin-dihexoside | 5.23 | 352 | 625 | 445/301 |
16 | Quercetin-dihexoside | 5.29 | 352 | 625 | 445/301 |
17 | Quercetin-3-O-vicianoside | 5.52 | 353 | 595 | 432/301 |
18 | Quercetin-3-robinobioside | 5.87 | 353 | 609 | 463/301 |
19 | Quercetin-3-O-rutinoside | 6.02 | 353 | 609 | 463/301 |
20 | Quercetin-3-O-galctoside | 6.09 | 352 | 463 | 301 |
21 | Quercetin-3-O-glucoside | 6.22 | 352 | 463 | 301 |
22 | Eriodictyol-glucuronide | 6.28 | 280 | 463 | 287 |
23 | Isorhamnetin pentosylhexoside | 6.41 | 352 | 609 | 315 |
24 | Quercetin-O-deoxyhexose-O-deoxyhexoside | 6.76 | 352 | 593 | 433/301 |
25 | Isorhamnetin rhamnosylhexosideisomer | 6.71 | 352 | 623 | 463/315 |
26 | Isorhamnetin rhamnosylhexosideisomer | 6.88 | 352 | 623 | 421/315 |
27 | Di-caffeic quinic acid | 6.93 | 323 | 515 | 353/191 |
Numbers | C 1e | C 2e | C 3e | C 4c | C 5c | C 6c |
---|---|---|---|---|---|---|
1 | 4.43 ± 0.09 | 4.33 ± 0.07 | 3.23 ± 0.07 | 2.87 ± 0.08 | 2.16 ± 0.07 | 2.04 ± 0.06 |
2 | 174.35 ± 1.38 | 161.53 ± 1.75 | 141.99 ± 1.51 | 128.49 ± 1.14 | 91.56 ± 0.89 | 98.81 ± 0.53 |
3 | 1.30 ± 0.05 | 1.22 ± 0.04 | 1.26 ± 0.02 | 1.14 ± 0.04 | 1.09 ± 0.03 | 1.06 ± 0.03 |
4 | 18.27 ± 0.03 | 17.81 ± 0.70 | 18.21 ± 0.10 | 16.18 ± 0.90 | 16.66 ± 0.68 | 16.70 ± 0.59 |
5 | 10.23 ± 0.09 | 9.61 ± 0.07 | 9.97 ± 0.08 | 8.74 ± 0.07 | 8.77 ± 0.05 | 8.98 ± 0.05 |
6 | 6.70 ± 0.06 | 5.96 ± 0.05 | 6.12 ± 0.05 | 5.32 ± 0.08 | 5.31 ± 0.06 | 4.81 ± 0.03 |
7 | 661.70 ± 4.48 | 621.34 ± 2.22 | 666.44 ± 2.18 | 651.55 ± 4.24 | 652.15 ± 4.43 | 626.4 ± 4.13 |
8 | 92.69 ± 0.46 | 88.17 ± 1.17 | 84.26 ± 2.02 | 74.74 ± 4.42 | 77.51 ± 3.64 | 76.25 ± 3.73 |
9 | 5.60 ± 0.25 | 4.57 ± 0.20 | 4.82 ± 0.22 | 3.66 ± 0.28 | 4.21 ± 0.22 | 3.91 ± 0.01 |
10 | 22.06 ± 1.01 | 25.01 ± 0.62 | 19.99 ± 0.69 | 19.99 ± 0.34 | 19.71 ± 0.15 | 22.07 ± 1.09 |
11 | 316.02 ± 2.28 | 285.62 ± 9.02 | 235.42 ± 1.33 | 254.90 ± 1.68 | 248.72 ± 1.02 | 246.79 ± 2.21 |
12 | 4.13 ± 0.19 | 3.40 ± 0.18 | 3.64 ± 0.09 | 3.19 ± 0.04 | 3.29 ± 0.07 | 3.16 ± 0.12 |
13 | 29.41 ± 0.26 | 26.86 ± 0.82 | 28.81 ± 0.43 | 23.35 ± 0.41 | 22.32 ± 0.13 | 24.14 ± 0.42 |
14 | 160.13 ± 1.19 | 166.19 ± 1.16 | 165.89 ± 1.63 | 155.28 ± 1.98 | 153.58 ± 1.65 | 154.53 ± 1.85 |
15 | 3.35 ± 0.14 | 3.19 ± 0.07 | 3.28 ± 0.04 | 2.15 ± 0.04 | 2.89 ± 0.01 | 3.09 ± 0.15 |
17 | 4.80 ± 0.20 | 4.41 ± 0.10 | 4.99 ± 0.09 | 3.50 ± 0.05 | 3.45 ± 0.02 | 3.32 ± 0.22 |
18 | 2.52 ± 0.12 | 2.60 ± 0.13 | 2.56 ± 0.09 | 1.95 ± 0.09 | 1.94 ± 0.04 | 2.45 ± 0.03 |
19 | 10.68 ± 0.10 | 10.74 ± 0.11 | 9.99 ± 0.05 | 8.98 ± 0.08 | 9.29 ± 0.03 | 9.31 ± 0.21 |
20 | 32.43 ± 0.47 | 38.97 ± 0.24 | 36.42 ± 0.18 | 31.46 ± 0.14 | 31.77 ± 0.05 | 32.11 ± 0.50 |
21 | 27.24 ± 0.21 | 26.75 ± 0.16 | 26.97 ± 0.18 | 23.54 ± 0.11 | 22.98 ± 0.05 | 23.27 ± 0.11 |
22 | 44.40 ± 0.39 | 47.61 ± 0.28 | 45.33 ± 0.12 | 38.97 ± 0.24 | 39.24 ± 0.15 | 41.36 ± 0.39 |
23 | 6.20 ± 0.06 | 6.81 ± 0.05 | 6.47 ± 0.02 | 5.81 ± 0.01 | 6.30 ± 0.02 | 6.33 ± 0.02 |
25 | 3.16 ± 0.04 | 3.18 ± 0.03 | 3.09 ± 0.01 | 3.16 ± 0.01 | 2.89 ± 0.01 | 2.95 ± 0.01 |
27 | 2.35 ± 0.02 | 2.29 ± 0.02 | 2.15 ± 0.02 | 2.33 ± 0.01 | 2.00 ± 0.01 | 2.08 ± 0.02 |
Procyanidin polymers | 954.57 ± 6.45 | 921.73 ± 1.79 | 946.09 ± 2.16 | 871.07 ± 4.13 | 872.27 ± 4.21 | 877.84 ± 3.78 |
Total | 2598.72 ± 17.86 a | 2489.9 ± 15.78 b | 2477.39 ± 11.56 b | 2342.32 ± 15.87 c | 2302.06 ± 13.85 d | 2293.76 ± 12.74 d |
ABTS | FRAP | Polyphenolic | Ultra-Weak Luminescence | Sugars | |
---|---|---|---|---|---|
ABTS | 0.94 | 0.94 | 0.91 | 0.11 | |
FRAP | 0.96 | 0.99 | 0.17 | ||
Polyphenolic | 0.96 | 0.10 | |||
Ultra-weak luminescence | 0.04 | ||||
Sugars |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trenka, M.; Nawirska-Olszańska, A.; Oziembłowski, M. Analysis of Selected Properties of Fruits of Black Chokeberry (Aronia melanocarpa L.) from Organic and Conventional Cultivation. Appl. Sci. 2020, 10, 9096. https://doi.org/10.3390/app10249096
Trenka M, Nawirska-Olszańska A, Oziembłowski M. Analysis of Selected Properties of Fruits of Black Chokeberry (Aronia melanocarpa L.) from Organic and Conventional Cultivation. Applied Sciences. 2020; 10(24):9096. https://doi.org/10.3390/app10249096
Chicago/Turabian StyleTrenka, Magdalena, Agnieszka Nawirska-Olszańska, and Maciej Oziembłowski. 2020. "Analysis of Selected Properties of Fruits of Black Chokeberry (Aronia melanocarpa L.) from Organic and Conventional Cultivation" Applied Sciences 10, no. 24: 9096. https://doi.org/10.3390/app10249096
APA StyleTrenka, M., Nawirska-Olszańska, A., & Oziembłowski, M. (2020). Analysis of Selected Properties of Fruits of Black Chokeberry (Aronia melanocarpa L.) from Organic and Conventional Cultivation. Applied Sciences, 10(24), 9096. https://doi.org/10.3390/app10249096