Forced Swim Alters the Radiolabeling of Blood Constituents from Wistar Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Forced Swimming and Recovery
2.3. In-Vitro Blood Constituent Radiolabeling
2.4. Statistical Analysis
3. Results
3.1. The Distribution (ATI%) of P and BC Compartments from the Blood Isolated from Animals Submitted to FS
3.2. The Fixation (ATI%) on Soluble and Insoluble Fractions Isolated from Blood Cells Obtained from Wistar Rats Submitted to FS
3.3. The Fixation (ATI%) on Soluble and Insoluble Fractions Isolated from the Plasma Obtained from Wistar Rats Submitted to FS
3.4. The Fixation (ATI%) in P and BC Compartments of Wistar Rats after Recovery from FS
3.5. The Fixation (ATI%) in SF-BC and IF-BC Fractions Isolated from Wistar Rats after Recovery from the FS
3.6. The Fixation (ATI%) in SF-P and IF-P Fractions Isolated from Wistar Rats after Recovery from the FS
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Martin, B.; Golden, E.; Carlson, O.D.; Egan, J.M.; Mattson, M.P.; Maudsley, S. Caloric restriction: Impact upon pituitary function and reproduction. Ageing Res. Rev. 2008, 7, 209–224. [Google Scholar] [CrossRef] [Green Version]
- Rygula, R.; Abumaria, N.; Havemann-Reinecke, U.; Rüther, E.; Hiemke, C.; Zernig, G.; Fuchs, E.; Flügge, G. Pharmacological validation of a chronic social stress model of depression in rats: Effects of reboxetine, haloperidol and diazepam. Behav. Pharmacol. 2008, 19, 183–196. [Google Scholar] [CrossRef]
- Mällo, T.; Matrov, D.; Kõiv, K.; Harro, J. Effect of chronic stress on behavior and cerebral oxidative metabolism in rats with high or low positive affect. Neuroscience 2009, 164, 963–974. [Google Scholar] [CrossRef]
- Mcculloch, P.F.; Dinovo, K.M.; Connolly, T.M. The cardiovascular and endocrine responses to voluntary and forced diving in trained and untrained rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 298, R224–R234. [Google Scholar] [CrossRef] [Green Version]
- Oken, B.S.; Chamine, I.; Wakeland, W. A systems approach to stress, stressors and resilience in humans. Behav. Brain Res. 2015, 282, 144–154. [Google Scholar] [CrossRef]
- Yankelevitch-Yahav, R.; Franko, M.; Huly, A.; Doron, R. The forced swim test as a model of depressive-like behavior. J. Vis. Exp. 2015, 2. [Google Scholar] [CrossRef] [PubMed]
- Akil, M.; Bicer, M.; Kilic, M.; Avunduk, M.C.; Mogulkoc, R.; Baltaci, A.K. Effect of intraperitoneal selenium administration on liver glycogen levels in rats subjected to acute forced swimming. Biol. Trace Elem. Res. 2011, 139, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Pitychoutis, P.M.; Sanoudou, D.; Papandreou, M.; Nasias, D.; Kouskou, M.; Tomlinson, C.R.; Tsonis, P.A.; Papadopoulou-Daifoti, Z. Forced swim test induces divergent global transcriptomic alterations in the hippocampus of high versus low novelty-seeker rats. Hum. Genom. 2014, 8, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shors, T.J. Acute stress and re-exposure to the stressful context suppress spontaneous unit activity in the basolateral amygdala via NMDA receptor activation. Neuroreport 1999, 10, 2811–2815. [Google Scholar] [CrossRef] [PubMed]
- Maldonado-Devincci, A.M.; Beattie, M.C.; Morrow, D.H.; McKinley, R.E.; Cook, J.B.; O’Buckley, T.K.; Morrow, A.L. Reduction of circulating and selective limbic brain levels of (3α,5α)-3-hydroxy-pregnan-20-one (3α,5α-THP) following forced swim stress in C57BL/6J mice. Psychopharmacology (Berl.) 2014, 231, 3281–3292. [Google Scholar] [CrossRef] [Green Version]
- Tõnissaar, M.; Herm, L.; Eller, M.; Kõiv, K.; Rinken, A.; Harro, J. Rats with high or low sociability are differently affected by chronic variable stress. Neuroscience 2008, 152, 867–876. [Google Scholar] [CrossRef] [PubMed]
- Brand, L.; Groenewald, I.; Stein, D.J.; Wegener, G.; Harvey, B.H. Stress and re-stress increases conditioned taste aversion learning in rats: Possible frontal cortical and hippocampal muscarinic receptor involvement. Eur. J. Pharmacol. 2008, 586, 205–211. [Google Scholar] [CrossRef]
- Pedreanez, A.; Arcaya, J.L.; Carrizo, E.; Mosquera, J. Forced swimming test increase superoxide anion positive cells and angiotensin II positive cells in the cerebrum and cerebellum of the rat. Brain Res. Bull. 2006, 71, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Souza, D.E.; Pereira, M.O.; Brito, L.C.; Souza, R.S.S.; Almeida, M.C.; Fonseca, A.S.; Santos-Filho, S.D.; Vaisberg, M.; Bernardo-Filho, M. Does acute swimming exercise alter the bioavailability of the radiopharmaceutical technetium-99m methylenediphosphonate (99mTc-MDP) in Wistar rats? Anim. Biol. 2011, 61, 403–412. [Google Scholar]
- Saha, G.B. Fundamentals of Nuclear Pharmacy, 5th ed.; Springer: New York, NY, USA, 2010. [Google Scholar]
- Hara, M.; Monzen, H.; Futai, R.; Inagaki, K.; Shimoyama, H.; Morikawa, M.; Tomioka, N.; Konishi, T.; Watanabe, Y.; Yuki, R.; et al. Reduction of infracardiac intestinal activity by a small amount of soda water in technetium-99m tetrofosmin myocardial perfusion scintigraphy with adenosine stress. J. Nucl. Cardiol. 2008, 15, 241–245. [Google Scholar] [CrossRef]
- Papathanasiou, N.D.; Rondogianni, P.E.; Pianou, N.K.; Karampina, P.A.; Vlontzou, E.A.; Datseris, I.E. 99mTc-depreotide in the evaluation of bone infection and inflammation. Nucl. Med. Commun. 2008, 29, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Stein, P.D.; Freeman, L.M.; Sostman, H.D.; Goodman, L.R.; Woodard, P.K.; Naidich, D.P.; Gottschalk, A.; Bailey, D.L.; Matta, F.; Yaekoub, A.Y.; et al. SPECT in acute pulmonary embolism. J. Nucl. Med. 2009, 50, 1999–2007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elgazzar, A.H. Synopsis of Nuclear Medicine Pathophysiology, 1st ed.; Springer International Publishing: Chan, Switzerland, 2014. [Google Scholar]
- Ahmad, I.; Amir, N.; Durr-E-Sabih; Bin Asad, M.H.; Rahim, M.K.; Hussain, M.S.; Murtaza, G.; Shah, S.N. Preparation and radiochemical control of 99mTc labeled blood pool agent for in vivo labelling of the red blood cells. Acta Pol. Pharm. 2014, 71, 245–248. [Google Scholar]
- Mccommis, K.S.; Goldstein, T.A.; Zhang, H.; Misselwitz, B.; Gropler, R.J.; Zheng, J. Quantification of myocardial blood volume during dipyridamole and doubtamine stress: A perfusion CMR study. J. Cardiovasc. Magn. Reson. 2007, 9, 785–792. [Google Scholar] [CrossRef]
- Engvall, C.; Ryding, E.; Wirestam, R.; Holtås, S.; Ljunggren, K.; Ohlsson, T.; Reinstrup, P. Human cerebral blood volume (CBV) measured by dynamic susceptibility contrast MRI and 99mTc-RBC SPECT. J. Neurosurg. Anesthesiol. 2008, 20, 41–44. [Google Scholar] [CrossRef]
- Olds, G.D.; Cooper, G.S.; Chak, A.; Sivak, M.V.J.R.; Chitale, A.A.; Wong, R.C. The yield of bleeding scans in acute lower gastrointestinal hemorrhage. J. Clin. Gastroenterol. 2005, 39, 273–277. [Google Scholar] [CrossRef] [PubMed]
- Provost, K.; Charest, M. Detection of intrathoracic bleeding by 99mTc-labeled red blood cell SPECT/CT after wedge biopsy of pulmonary angiosarcoma. J. Nucl. Med. Technol. 2016, 44, 205–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vallabhajosula, S.; Killeen, R.P.; Osborne, J.R. Altered biodistribution of radiopharmaceuticals: Role of radiochemical/pharmaceutical purity, physiological, and pharmacologic factors. Semin Nucl. Med. 2010, 40, 220–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gómez-Perales, J.L.; Martínez, A.A. A portable database of adverse reactions and drug interactions with radiopharmaceuticals. J. Nucl. Med. Technol. 2013, 41, 212–215. [Google Scholar] [CrossRef]
- Benarroz, M.O.; Fonseca, A.S.; Rocha, G.S.; Frydman, J.N.; Rocha, V.C.; Pereira, M.O.; Bernardo-Filho, M. Cinnamomum zeylanicum extract on the radiolabeling of blood constituents and the morphometry of red blood cells: In vitro assay. Appl. Radiat. Isot. 2007, 66, 139–146. [Google Scholar] [CrossRef]
- Frydman, J.N.G.; Rocha, V.C.; Benarroz, M.O.; Rocha, G.S.; Pereira, M.O.; Fonseca, A.S.; Bernardo-Filho, M. Assessment of effects of a Cordia salicifolia extract on the radiolabeling of blood constituents and on the morphology of red blood cells. J. Med. Food 2008, 11, 767–772. [Google Scholar] [CrossRef]
- Cekic, B.; Muftuler, F.Z.; Kilcar, A.Y.; Ichedef, C.; Unak, P. Effects of broccoli extract on biodistribution and labeling blood components with 99mTc-GH. Acta Cir. Bras. 2011, 26, 339–345. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Pinto, A.B.; Santos-Filho, S.D.; Carvalho, J.J.; Pereira, M.J.; Fonseca, A.S.; Bernardo-Filho, M. In vitro and in vivo studies of an aqueous extract of Matricaria recutita (German chamomile) on the radiolabeling of blood constituents, on the morphology of red blood cells and on the biodistribution of the radiopharmaceutical sodium pertechnetate. Pharmacogn. Mag. 2013, 9 (Suppl. 1), S49–S56. [Google Scholar] [CrossRef] [Green Version]
- European Association of Nuclear Medicine (EANM). The Radiopharmacy: A Technologist’s Guide. Available online: http://www.eanm.org/content-eanm/uploads/2016/11/tech_radiopharmacy.pdf (accessed on 6 April 2017).
- Sammartano, A.; Scarlattei, M.; Migliari, S.; Baldari, G.; Ruffini, L. Validation of in vitro labeling method for human use of heat-damage red blood cells to detect splenic tissue and hemocateretic function. Acta Biomed. 2019, 90, 275–280. [Google Scholar]
- Yoshida, M.; Tashiro, M.; Nishi, K.; Mishima, M.; Kawano, K.; Takazono, T.; Saijo, T.; Yamamoto, K.; Imamura, Y.; Miyazaki, T.; et al. Detection of invasive pulmonary aspergillosis in mice using lung perfusion single-photon emission computed tomography with [99mTc] MAA. Med. Mycol. 2020. [Google Scholar] [CrossRef]
- Iorio, F.; Frantellizzi, V.; Drudi, F.M.; Maghella, F.; Liberatore, M. Locally vascularized pelvic accessory spleen. J. Ultrasound 2015, 19, 141–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eeeee-Bonfils, P.K.; Damgaard, M.; Stokholm, K.H.; Nielsen, S.L. 99mTc-albumin can replace 125I-albumin to determine plasma volume repeatedly. Scand. J. Clin. Lab. Investig. 2012, 72, 447–451. [Google Scholar] [CrossRef] [PubMed]
- Ladapo, J.A.; Blecker, S.; Elashoff, M.R.; Federspiel, J.J.; Vieira, D.L.; Sharma, G.; Monane, M.; Rosenberg, S.; Phelps, C.E.; Douglas, P.S. Clinical implications of referral bias in the diagnostic performance of exercise testing for coronary artery disease. J. Am. Heart Assoc. 2013, 2, e000505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindner, O.; Pascual, T.N.; Mercuri, M.; Acampa, W.; Burchert, W.; Flotats, A.; Kaufmann, P.A.; Kitsiou, A.; Knuuti, J.; Underwood, S.R.; et al. Nuclear cardiology practice and associated radiation doses in Europe: Results of the IAEA Nuclear Cardiology Protocols Study (INCAPS) for the 27 European countries. Eur. J. Nucl. Med. Mol. Imaging 2016, 43, 718–728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gwozdzinski, K.; Pieniazek, A.; Brzeszczynska, J.; Tabaczar, S.; Jegier, A. Alterations in red blood cells and plasma properties after acute single bout of exercise. Sci. World J. 2013, 2013, 168376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NPR/Robert Wood Johnson Foundation/Harvard School of Public Health. The Burden of Stress in America. Available online: http://www.rwjf.org/en/library/research/2014/07/the-burden-of-stress-in-america.html (accessed on 8 April 2017).
- Fonseca, A.S.; Frydman, J.N.; Rocha, V.C.; Bernardo-Filho, M. Acetylsalicylic acid decreases the labeling of blood constituents with technetium-99m. Acta Biol. Hung. 2007, 58, 187–198. [Google Scholar] [CrossRef]
- Godbout, J.P.; Glaser, R. Stress-induced immune dysregulation: Implications for wound healing, infectious disease and cancer. J. Neuroimmune Pharmacol. 2006, 1, 421–427. [Google Scholar] [CrossRef]
- Barbour, K.A.; Edenfield, T.M.; Blumenthal, J.A. Exercise as a treatment for depression and other psychiatric disorders: A review. J. Cardiopulm. Rehabil. Prev. 2007, 27, 359–367. [Google Scholar] [CrossRef]
- Wirth, S.M.; Macaulay, T.E.; Winstead, P.S.; Smith, K.M. Stress-related mucosal disease: Considerations of current medication prophylaxis. Orthopedics 2007, 30, 1010–1014. [Google Scholar] [CrossRef]
- Utsugi, M.; Saijo, Y.; Yoshioka, E.; Sato, T.; Horikawa, N.; Gong, Y.; Kishi, R. Relationship between two alternative occupational stress models and arterial stiffness: A cross-sectional study among Japanese workers. Int. Arch. Occup. Environ. Health 2008, 82, 175–183. [Google Scholar] [CrossRef]
- Liao, L.R.; Ng, G.Y.; Jones, A.Y.; Pang, M.Y. Cardiovascular stress ınduced by whole-body vibration exercise in ındividuals with chronic stroke. Phys. Ther. 2015, 95, 966–977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hicks, R.J.; Eu, P.; Arkles, L.B. Efficiency of labelling of red blood cells with technetium-99m after dipyridamole infusion for thallium-201 stress testing. Eur. J. Nucl. Med. 1992, 19, 1050–1053. [Google Scholar] [CrossRef] [PubMed]
- Gadjeva, V.; Dimov, A.; Georgieva, N. Influence of therapy on the antioxidant status in patients with melanoma. J. Clin. Pharm. Ther. 2008, 33, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Şekeroğlu, M.R.; Huyut, Z.; Him, A. The susceptibility of erythrocytes to oxidation during storage of blood: Effects of melatonin and propofol. Clin. Biochem. 2012, 45, 315–319. [Google Scholar] [CrossRef] [PubMed]
- Vierck, H.B.; Darvin, M.E.; Lademann, J.; Reisshauer, A.; Baack, A.; Sterry, W.; Patzelt, A. The influence of endurance exercise on the antioxidative status of human skin. Eur. J. Appl. Physiol. 2012, 112, 3361–3367. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.T.; Yang, S.C.; Chen, K.T.; Huang, C.C.; Lee, N.Y. Protective effects of L-arginine on pulmonary oxidative stress and antioxidant defenses during exhaustive exercise in rats. Acta Pharmacol. Sin. 2005, 26, 992–999. [Google Scholar] [CrossRef]
- Oh, H.Y.; Lim, S.; Lee, J.M.; Kim, D.Y.; Ann, E.S.; Yoon, S. A combination of soy isoflavone supplementation and exercise improves lipid profiles and protects antioxidant defense-systems against exercise-induced oxidative stress in ovariectomized rats. Biofactors 2007, 29, 175–185. [Google Scholar] [CrossRef]
- Williams, C.A.; Gordon, M.E.; Betros, C.L.; Mckeever, K.H. Apoptosis and antioxidant status are influenced by age and exercise training in horses. J. Anim. Sci. 2008, 86, 576–583. [Google Scholar] [CrossRef]
- Andersson, H.; Karlsen, A.; Blomhoff, R.; Raastad, T.; Kadi, F. Plasma antioxidant responses and oxidative stress following a soccer game in elite female players. Scand. J. Med. Sci. Sports 2010, 20, 600–608. [Google Scholar] [CrossRef]
- Morena, M.; Cristol, J.P.; Senecal, L.; Leray-Moragues, H.; Krieter, D.; Canaud, B. Oxidative stress in hemodialysis patients: Is NADPH oxidase complex the culprit? Kidney Int. Suppl. 2002, 61, 109–114. [Google Scholar] [CrossRef] [Green Version]
- Roxborough, H.E.; Mercer, C.; Mcmaster, D.; Maxwell, A.P.; Young, I.S. Plasma glutathione peroxidase activity is reduced in haemodialysis patients. Nephron 1999, 81, 278–283. [Google Scholar] [CrossRef]
- Soejima, A.; Matsuzawa, N.; Hayashi, T.; Kimura, R.; Ootsuka, T.; Fukuoka, K.; Yamada, A.; Nagasawa, T.; Era, S. Alteration of redox state of human serum albumin before and after hemodialysis. Blood Purif. 2004, 22, 525–529. [Google Scholar] [CrossRef] [PubMed]
- Farvin, K.H.S.; Anandan, R.; Kumar, S.H.S.; Shiny, K.S.; Sankar, T.V.; Thankappan, T.K. Effect of squalene on tissue defense system in isoproterenol-induced myocardial infarction in rats. Pharmacol. Res. 2004, 50, 231–236. [Google Scholar]
- Finkler, M.; Lichtenberg, D.; Pinchuk, I. The relationship between oxidative stress and exercise. J. Basic Clin. Physiol. Pharmacol. 2014, 25, 1–11. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fonseca, A.S.d.; Rocha, G.S.; Pereira, M.O.; Cardoso, A.L.B.D.; Frederico, E.H.F.F.; Moura-Fernandes, M.C.; Batouli-Santos, D.; Meirelles, A.G.; Santos-Fernandes, C.; Eduardo-Santos, T.; et al. Forced Swim Alters the Radiolabeling of Blood Constituents from Wistar Rats. Appl. Sci. 2020, 10, 1116. https://doi.org/10.3390/app10031116
Fonseca ASd, Rocha GS, Pereira MO, Cardoso ALBD, Frederico EHFF, Moura-Fernandes MC, Batouli-Santos D, Meirelles AG, Santos-Fernandes C, Eduardo-Santos T, et al. Forced Swim Alters the Radiolabeling of Blood Constituents from Wistar Rats. Applied Sciences. 2020; 10(3):1116. https://doi.org/10.3390/app10031116
Chicago/Turabian StyleFonseca, Adenilson S. da, Gabrielle S. Rocha, Márcia O. Pereira, André L. B. D. Cardoso, Eric H. F. F. Frederico, Márcia C. Moura-Fernandes, Daniel Batouli-Santos, Alexandre G. Meirelles, Carmem Santos-Fernandes, Tiago Eduardo-Santos, and et al. 2020. "Forced Swim Alters the Radiolabeling of Blood Constituents from Wistar Rats" Applied Sciences 10, no. 3: 1116. https://doi.org/10.3390/app10031116
APA StyleFonseca, A. S. d., Rocha, G. S., Pereira, M. O., Cardoso, A. L. B. D., Frederico, E. H. F. F., Moura-Fernandes, M. C., Batouli-Santos, D., Meirelles, A. G., Santos-Fernandes, C., Eduardo-Santos, T., Gama, M. A. S., Paineiras-Domingos, L. L., Sá-Caputo, D. C., Taiar, R., Asad, N. R., & Bernardo-Filho, M. (2020). Forced Swim Alters the Radiolabeling of Blood Constituents from Wistar Rats. Applied Sciences, 10(3), 1116. https://doi.org/10.3390/app10031116