Demand Prediction Using a Soft-Computing Approach: A Case Study of Automotive Industry
Abstract
:1. Introduction
2. Literature Review
2.1. Expert Judgements
2.2. Fuzzy Logic
2.3. Artificial Neural Network
2.4. Forecasting in Supply Chain
3. Proposed Model
3.1. Expert Judgements (Delphi Method)
3.2. Information Softening (Fuzzy Logic)
- If x is A1 and y is B1 then z is C1.
- If x is A2 and y is B2 then z is C2.
Mamdani Method
3.3. Time Series Artificial Neural Network
3.4. Nonlinear Autoregressive Neural Network with External Input
4. Application
4.1. Delphi Method Application
- Anonymity: This feature seeks to minimize the exchange of views among experts consulted. It is understood how to limit the bias in its valuation.
- Interaction and continuous feedback: continuous development activity, the application consists of a questionnaire to be analyzed and the feedback is aimed at improving its evaluation.
- Heterogeneity: It is a characteristic applicable to different types to profiles that maintain direct relation with the study phenomenon.
- Statistical work: It is the activity that consists of basic statistics techniques of central tendency, data normality and correlation [42].
- Interest-rate. The car purchase is motivated by large number of financial institutions, the level of interest is high impact factor in sales performance.
- Gross domestic product. National growth is a representative indicator that maintains direct connection with the vehicles sales, decreasing this can generate notes or record damages to the automotive sector.
- Inflation. Purchasing power is directly related to the value of the currency and is measured by the inflation factor which is represented as the ability to purchase certain good.
- Mexican currency. Corresponds to the currency value referring to the United States currency, this variable is directly represented in the national exchange of goods.
4.2. Fuzzy Analysis
- Interest-rate is A and GDP is B and inflation is C and USA/MXN is D then is Z.
- Interest-rate is A or GDP is B or inflation is C or USA/MXN is D then is Z.
4.3. Qualitative and Quantitative Data Integration Using Narx
5. Discussion and Conclusions
- This methodology is possible to identify variables that are not reflected in the planning and supply chain management.
- Integrate expert judgements through tools that presently offer advantages to developing new planning and prediction strategies by analyzing variables.
- Planning is one of the activities that help to control the products flow in an appropriate way, mitigating the error and the losses in order to minimize the risk.
- The uncertainty on markets the requires new strategies to be efficient in the demand planning process through new artificial intelligence technologies.
Author Contributions
Funding
Conflicts of Interest
References
- Chopra, S.; Meindl, P. Administración de la Cadena de Suministro, 3rd ed.; Person Education: Mexico, Mexico, 2008. [Google Scholar]
- Ardila, W.; Romero, D.; González, F. Estrategias para la Gestión de Riesgos en la Cadena de Suministros. In Proceedings of the Latin American and Caribbean Conference for Engineering and Technology, Guayaquil, Ecuador, 21–24 July 2014; pp. 22–24. [Google Scholar]
- Heizer, J.; Render, B. Principios de Administración de Operaciones; Pearson Educacion: Mexico, Mexico, 2004. [Google Scholar]
- Chiu, M.; Lin, G. Collaborative supply chain planning using the artificial neural network approach. J. Manuf. Technol. Manag. 2004, 15, 787–796. [Google Scholar] [CrossRef]
- Villamizar, J.C.M.; León, Ó.P.; Jaimes, W.A. Efecto látigo en la planeación de la cadena de abastecimiento, medición y control. Ciencia e Ingeniería Neogranadina 2013, 23, 3. [Google Scholar] [CrossRef] [Green Version]
- Stevens, G.C. Integrating the supply chain. Int. J. Phys. Distrib. Mater. Manag. 1989, 19, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Bajalinov, E.; Duleba, S. Seasonal time series forecasting by the Walsh-transformation based technique. Cent. Eur. J. Oper. Res. 2019. [Google Scholar] [CrossRef]
- Gupta, A.; Maranas, C.D. Managing demand uncertainty in supply chain planning. Comput. Chem. Eng. 2003, 27, 1219–1227. [Google Scholar] [CrossRef]
- Landeta, J. El Método Delphi. Una técnica de Previsión del Futuro; Ariel: Barcelona, Spain, 1999. [Google Scholar]
- Astigarraga, E. El Método Delphi; Universidad de Deusto: San Sebastián, Spain, 2003. [Google Scholar]
- Winston, W.L.; Goldberg, J.B. Investigación de Operaciones: Aplicaciones y Algoritmos; Thomson: Mexico, Mexico, 2005. [Google Scholar]
- Casas, M.; Franco, M.; Goikolea, J.; Jiménez-Arriero, M.; Martínez-Raga, J.; Roncero, C.; Szerman, N. Trastorno bipolar asociado al uso de sustancias adictivas (patología dual). Revisión sistemática de la evidencia científica y consenso entre profesionales expertos. Actas Españolas de Psiquiatría 2008, 36, 350–361. [Google Scholar]
- Chao, J.M.S.C. Análisis por el método Delphi de la idea de ciudad. Anuario de la Universidad Internacional SEK 2000, 6, 89–102. [Google Scholar]
- Soberón, C.G.; Bautista, L.A.B.; Cid, D.M. Metodología de estimación preliminar de la vulnerabilidad de puentes basada en procedimientos de la Secretaría de Comunicaciones y Transportes. Aplicación a puentes carreteros del Pacífico. In Proceedings of the XV Congreso Nacional de Ingeniería Estructural, Puerto Vallarta, México, 1–4 November 2006; pp. 1–14. [Google Scholar]
- Cabello, E.; Chirinos, J.L. Validación y aplicabilidad de encuestas SERVQUAL modificadas para medir la satisfacción de usuarios externos en servicios de salud. Rev. Medica Hered. 2012, 23, 88–95. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Ricardo, Y.; Pérez-del Cerro, Y.; Proenza-Pupo, D. Sistema para la Gestión de la Información de Seguridad Informática en la Universidad de Ciencias Médicas de Holguín. Ciencias Holguín 2014, 20, 1–4. [Google Scholar]
- Tolosa, H.A.M.; Bustos, W.O.P.; Nieto, C.A.B. Encuesta de opinión para la evaluación de la gestión pública en colombia: Una propuesta de medición. Semestre Económico 2012, 15, 77–102. [Google Scholar] [CrossRef] [Green Version]
- León, A.M.; Fleitas, N.P.; Rivera, D.N.; Nariño, A.H.; Alonso, A.R.; Moya, J.V. Estudio de la construcción de Índices Integrales para el apoyo al Control de Gestión Empresarial. Enfoque UTE 2011, 2, 1–38. [Google Scholar] [CrossRef]
- Alkharabsheh, A.; Moslem, S.; Duleba, S. Evaluating Passenger Demand for Development of the Urban Transport System by an AHP Model with the Real-World Application of Amman. Appl. Sci. 2019, 9, 4759. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, K.L. Process improvement in the presence of qualitative response by combining fuzzy sets and neural networks. Integr. Manuf. Syst. 2001, 12, 449–462. [Google Scholar] [CrossRef]
- Sugeno, M. An introductory survey of fuzzy control. Inf. Sci. 1985, 36, 59–83. [Google Scholar] [CrossRef]
- Medina, M.A.P.L.; Saba, M.G.H.; de Guevara Durán, M.E.L.; Silva, M.J.H. Controladores PID y controladores difusos. Revista de Ingeniería Industrial 2011, 5, 1–13. [Google Scholar]
- Zimmermann, H.J. Fuzzy control. In Fuzzy Set Theory—and Its Applications; Springer: Berlin/Heidelberg, Germany, 1996; pp. 203–240. [Google Scholar]
- Escobar-Gómez, E.; Díaz-Núñez, J.; Taracena-Sanz, L. Modelo para el ajuste de pronósticos agregados utilizando lógica difusa. Ingeniería, Investigación y Tecnología 2010, 11, 289–302. [Google Scholar] [CrossRef] [Green Version]
- Tabares, H.; Hernández, J. Aproximación por lógica difusa de la serie de tiempo “demanda diaria de energía eléctrica”. Revista Facultad de Ingeniería 2013, 209–217. [Google Scholar]
- Blancas, J.; Noel, J. Pronóstico de la demanda eléctrica a corto plazo con lógica difusa. ENERLAC. Revista de energía de Latinoamérica y el Caribe 2018, 2, 8–27. [Google Scholar]
- Arango Londoño, A. Pronóstico del Índice General de la Bolsa de Valores de Colombia (IGBC) Usando Modelos de Inferencia Difusa. Ph.D. Thesis, Universidad Nacional de Colombia, Medellín, Antioquia, 2012. [Google Scholar]
- Clemen, R.T. Combining forecasts: A review and annotated bibliography. Int. J. Forecast. 1989, 5, 559–583. [Google Scholar] [CrossRef]
- Armstrong, J.S.; Collopy, F. Integration of Statistical Methods and Judgment for Time Series Forecasting: Principles from Empirical Research. 1998. Available online: http://repository.upenn.edu/marketing_papers/2 (accessed on 10 September 2019).
- Sanders, N.R.; Ritzman, L.P. Integrating judgmental and quantitative forecasts: Methodologies for pooling marketing and operations information. Int. J. Oper. Prod. Manag. 2004, 24, 514–529. [Google Scholar] [CrossRef]
- Kochak, A.; Sharma, S. Demand forecasting using neural network for supply chain management. Int. J. Mech. Eng. Robot. Res. 2015, 4, 96. [Google Scholar]
- Toro, O.; GIRALDO, D.A.M.; Isaza, H.S. Pronóstico de ventas usando redes neuronales. Sci. Tech. 2004, 10, 25–30. [Google Scholar]
- Thiesing, F.M.; Vornberger, O. Sales forecasting using neural networks. In Proceedings of the IEEE International Conference on Neural Networks, Houston, TX, USA, 12 June 1997; Volume 4, pp. 2125–2128. [Google Scholar]
- Chang, P.C.; Wang, Y.W.; Tsai, C.Y. Evolving neural network for printed circuit board sales forecasting. Expert Syst. Appl. 2005, 29, 83–92. [Google Scholar] [CrossRef]
- Asli, A.; Nursel, Ö.; Eric, S. Demand forecasting for apparel manufacturers by using neuro-fuzzy techniques. J. Model. Manag. 2014, 9, 18–35. [Google Scholar]
- Jüttner, U. Supply chain risk management: Understanding the business requirements from a practitioner perspective. Int. J. Logist. Manag. 2005, 16, 120–141. [Google Scholar] [CrossRef]
- Shahrabi, J.; Mousavi, S.; Heydar, M. Supply chain demand forecasting: A comparison of machine learning techniques and traditional methods. J. Appl. Sci. 2009, 9, 521–527. [Google Scholar]
- Ediger, V.Ş.; Akar, S. ARIMA forecasting of primary energy demand by fuel in Turkey. Energy Policy 2007, 35, 1701–1708. [Google Scholar] [CrossRef]
- Witt, S.F.; Song, H.; Louvieris, P. Statistical testing in forecasting model selection. J. Travel Res. 2003, 42, 151–158. [Google Scholar] [CrossRef] [Green Version]
- Thomassey, S.; Fiordaliso, A. A hybrid sales forecasting system based on clustering and decision trees. Decis. Support Syst. 2006, 42, 408–421. [Google Scholar] [CrossRef]
- Kuo, R.; Tseng, Y.; Chen, Z.Y. Integration of fuzzy neural network and artificial immune system-based back-propagation neural network for sales forecasting using qualitative and quantitative data. J. Intell. Manuf. 2016, 27, 1191–1207. [Google Scholar] [CrossRef]
- Figueroa, G.A.; Montilla, M.A.C.; Melo, R.M. Método DELPHI: Aplicaciones y posibilidades en la gestión prospectiva de la investigación y desarrollo. Rev. Venez. Anal. Coyunt. 2012, 18, 41–52. [Google Scholar]
- Reguant Álvarez, M.; Torrado Fonseca, M. El método Delphi. REIRE Revista d’Innovació i Recerca en Educació 2016, 9, 87–102. [Google Scholar]
- Gil-Gómez de Liaño, B.; Pascual-Ezama, D. La metodología Delphi como técnica de estudio de la validez de contenido. Anales de Psicología 2012, 28, 1011–1020. [Google Scholar]
- Riaño, C.E.; Palomino, M. Diseño y elaboración de un cuestionario acorde con el método Delphi para seleccionar laboratorios virtuales (LV). Sophia 2015, 11, 129–141. [Google Scholar]
- Reyes, G.; Enrique, C.; Trujillo Liñán, L. Aplicación del Método Delphi Modificado para la Validación de un Cuestionario de Incorporación de las TIC en la Práctica Docente. RIEE Revista Iberoamericana de Evaluación Educativa 2018, 11, 113–134. [Google Scholar] [CrossRef]
- Anguita, J.C.; Labrador, J.R.; Campos, J.D.; Casas Anguita, J.; Repullo Labrador, J.; Donado Campos, J. La encuesta como técnica de investigación. Elaboración de cuestionarios y tratamiento estadístico de los datos (I). Atención Primaria 2003, 31, 527–538. [Google Scholar] [CrossRef]
- Cortina, I.B.; Robaina, R.A. Lógica difusa aplicada a la toma de decisiones. Ingeniería Industrial 2010, 31, 1–5. [Google Scholar]
- Guzmán, D.; Castaño, V. La lógica difusa en ingeniería: Principios, aplicaciones y futuro. Revista de Ciencia y Tecnología 2009, 24, 87–107. [Google Scholar]
- Martínez, C.; Colmenares, G.; Pachano, F. Uso de Las técnicas de Preprocesamiento de Datos e Inteligencia Artificial (lógica Difusa) en la Clasificación/Predicción del Riesgo Bancario. Ph.D. Thesis, Universidad de los Andes, Santiago, Chile, 2007. [Google Scholar]
- De Vito, E.L.; Eduardo, C. Introducción al razonamiento aproximado: Lógica difusa. Revista Americana de Medicina Respiratoria 2006, 6, 126–136. [Google Scholar]
- Cordon, O. A historical review of evolutionary learning methods for Mamdani-type fuzzy rule-based systems: Designing interpretable genetic fuzzy systems. Int. J. Approx. Reason. 2011, 52, 894–913. [Google Scholar] [CrossRef] [Green Version]
- Mamdani, E.H.; Assilian, S. An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man Mach. Stud. 1975, 7, 1–13. [Google Scholar] [CrossRef]
- Wang, K. Computational Intelligence in Agile Manufacturing Engineering. In Agile Manufacturing: The 21st Century Competitive Strategy; Gunasekaran, A., Ed.; Elsevier Science Ltd.: Oxford, UK, 2001; pp. 297–315. [Google Scholar] [CrossRef]
- Pérez, R.A.M. Sistemas de inferencia basados en Lógica Borrosa: Fundamentos y caso de estudio. Rev. Investig. Sist. e Informática 2010, 7, 91–104. [Google Scholar]
- Vanegas, G.; Botero, C.; Restrepo, A. Una aproximación mediante lógica difusa al análisis de la competitividad empresarial. Administration Y Organizations 2014, 17, 14. [Google Scholar]
- Delgado, G.B.; Delgado, J.B. Metodología para la implementación de sistemas difusos tipo mamdani en lenguajes de programación de propósito general. In Proceedings of the Congreso Internacional en Ingeniería Electrónica, Chihuahua, Mexico, 10 October 2014; Volume 36, pp. 318–323. [Google Scholar]
- Brown, K.M.; Dennis, J. Derivative free analogues of the Levenberg-Marquardt and Gauss algorithms for nonlinear least squares approximation. Numer. Math. 1971, 18, 289–297. [Google Scholar] [CrossRef]
- Salazar Aguilar, M.A.; Cabrera Ríos, M. Pronóstico de demanda por medio de redes neuronales artificiales. Ingenierías 2007, 10, 6–12. [Google Scholar]
- Hippert, H.S.; Pedreira, C.E.; Souza, R.C. Neural networks for short-term load forecasting: A review and evaluation. IEEE Trans. Power Syst. 2001, 16, 44–55. [Google Scholar] [CrossRef]
- Saini, L.; Soni, M. Artificial neural network based peak load forecasting using Levenberg–Marquardt and quasi-Newton methods. IEE-Proc.-Gener. Transm. Distrib. 2002, 149, 578–584. [Google Scholar] [CrossRef]
- Lin, C.T.; Lee, C.S.G. Neural-network-based fuzzy logic control and decision system. IEEE Trans. Comput. 1991, 40, 1320–1336. [Google Scholar] [CrossRef]
- Mitrea, C.; Lee, C.; Wu, Z. A comparison between neural networks and traditional forecasting methods: A case study. Int. J. Eng. Bus. Manag. 2009, 1, 11. [Google Scholar] [CrossRef]
- Andalib, A.; Atry, F. Multi-step ahead forecasts for electricity prices using NARX: A new approach, a critical analysis of one-step ahead forecasts. Energy Convers. Manag. 2009, 50, 739–747. [Google Scholar] [CrossRef]
- Wang, D.; Lum, K.Y.; Yang, G. Parameter estimation of ARX/NARX model: A neural network based method. In Proceedings of the IEEE 9th International Conference on Neural Information Processing, ICONIP’02, Singapore, 18–22 November 2002; Volume 3, pp. 1109–1113. [Google Scholar]
- Altunkaynak, A.; Özger, M.; Çakmakci, M. Water consumption prediction of Istanbul city by using fuzzy logic approach. Water Resour. Manag. 2005, 19, 641–654. [Google Scholar] [CrossRef]
- Alippi, C.; Piuri, V. Experimental neural networks for prediction and identification. IEEE Trans. Instrum. Meas. 1996, 45, 670–676. [Google Scholar] [CrossRef]
- INEGI. Indice de Precios. From Internet. 2018. Available online: https://www.inegi.org.mx/temas/inpp/ (accessed on 9 May 2019).
- Kale, P.; Banwait, S.; Laroiya, S. Performance evaluation of ERP implementation in Indian SMEs. J. Manuf. Technol. Manag. 2010, 21, 758–780. [Google Scholar] [CrossRef]
- Hwa Chung, S.; Snyder, C.A. ERP adoption: A technological evolution approach. Int. J. Agil. Manag. Syst. 2000, 2, 24–32. [Google Scholar] [CrossRef]
- Jou, Y.T.; Wee, H.M.; Chen, H.C.; Hsieh, Y.H.; Wang, L. A neural network forecasting model for consumable parts in semiconductor manufacturing. J. Manuf. Technol. Manag. 2009, 20, 404–412. [Google Scholar] [CrossRef]
Input | Output | ||||
---|---|---|---|---|---|
Date | Interest rate | GDP | Inflation | USA/MXN | Demand |
2018/01 | 13.15 | 1.2 | 5.55 | 18.60 | 205,000 |
2018/02 | 13.15 | 1.2 | 5.34 | 18.84 | 202,000 |
2018/03 | 13.15 | 1.2 | 5.04 | 18.16 | 206,000 |
2018/04 | 13.15 | 2.6 | 4.55 | 18.71 | 360,000 |
2018/05 | 13.19 | 2.6 | 4.51 | 19.91 | 413,000 |
2018/06 | 13.19 | 2.6 | 4.65 | 19.91 | 413,000 |
2018/07 | 13.90 | 2.5 | 4.82 | 18.64 | 400,000 |
2018/08 | 13.90 | 2.5 | 4.90 | 19.08 | 400,000 |
2018/09 | 13.24 | 2.5 | 5.02 | 18.71 | 400,000 |
2018/10 | 13.24 | 1.7 | 4.90 | 20.33 | 266,000 |
2018/11 | 13.32 | 1.7 | 4.70 | 20.40 | 266,000 |
2018/12 | 13.32 | 1.7 | 4.80 | 19.64 | 266,000 |
Data Variables | |
---|---|
Historical | ... 0.80, 0.86, 0.87, 0.77, 0.93, 0.92, 0.77, 0.98, 0.84, 0.97, 0.90, 0.62. |
Variables | ... 0.50, 0.49, 0.50, 0.87, 1.00, 1.00, 0.97, 0.97, 0.97, 0.64, 0.64, 0.64. |
NARX | NAR | ||
---|---|---|---|
Input layer | 2 | Input layer | 2 |
Hidden layer | 10 | Hidden layer | 10 |
Output layer | 1 | Output layer | 1 |
Activation function | tansig | Activation function | tansig |
Training algorithm | trainscg | Training algorithm | trainscg |
Interactions | 16 | Interactions | 13 |
MSE | 0.0070 | MSE | 0.071 |
Correlation | 0.9882 | Correlation | 0.9215 |
Max-error | 6 | Max-error | 6 |
Performance models | |||
---|---|---|---|
Modelo | MAD | MAPE | MSE |
NARX | 17,661 | 8 | 561,742,971 |
NAR | 16,446 | 8 | 584,297,989 |
Holt | 23,359 | 12 | 996,544,938 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salais-Fierro, T.E.; Saucedo-Martinez, J.A.; Rodriguez-Aguilar, R.; Vela-Haro, J.M. Demand Prediction Using a Soft-Computing Approach: A Case Study of Automotive Industry. Appl. Sci. 2020, 10, 829. https://doi.org/10.3390/app10030829
Salais-Fierro TE, Saucedo-Martinez JA, Rodriguez-Aguilar R, Vela-Haro JM. Demand Prediction Using a Soft-Computing Approach: A Case Study of Automotive Industry. Applied Sciences. 2020; 10(3):829. https://doi.org/10.3390/app10030829
Chicago/Turabian StyleSalais-Fierro, Tomas Eloy, Jania Astrid Saucedo-Martinez, Roman Rodriguez-Aguilar, and Jose Manuel Vela-Haro. 2020. "Demand Prediction Using a Soft-Computing Approach: A Case Study of Automotive Industry" Applied Sciences 10, no. 3: 829. https://doi.org/10.3390/app10030829
APA StyleSalais-Fierro, T. E., Saucedo-Martinez, J. A., Rodriguez-Aguilar, R., & Vela-Haro, J. M. (2020). Demand Prediction Using a Soft-Computing Approach: A Case Study of Automotive Industry. Applied Sciences, 10(3), 829. https://doi.org/10.3390/app10030829