Study on Radiated Noise of a Panel under Fluctuating Surface Pressure Due to an Idealized Side Mirror
Abstract
:1. Introduction
2. Fluctuating Pressure Analysis of Idealized Side Mirror
2.1. 3D Model
2.2. Incompressible Numerical Simulation
2.3. Compressible Numerical Simulation
3. Aerodynamic Noise Analysis of the Panel
3.1. Incompressible Numerical Simulation
3.1.1. Convective Component of FSP
3.1.2. Acoustic Component of FSP
3.1.3. Aerodynamic Noise Analysis
3.2. Compressible Numerical Simulation
3.2.1. WFS Analysis
3.2.2. Aerodynamic Noise Analysis
4. Validation and Comparison of Analytical Methods
4.1. Validation of Simulation Analysis
4.2. Comparison of Calculation Time
- Numerical solution of external flow field: including the compressible and incompressible steady-state and transient numerical calculation, obtaining the fluctuating pressure data of the side mirror (CGNS or CASE format). Because the discrete N-S equation needs to be solved and the mesh size is required, this process has the longest calculation period.
- Read the FSP data file and its Fourier transform.
- Extract the convective component.
- Extract the acoustic component.
- Calculate the radiated SPL.
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bremner, P.G.; Wilby, J.F. Aero-vibro-acoustics: Problem statement and methods for simulation-based design solution. In Proceedings of the 8th AIAA/CEAS Aeroacoustics Conference and Exhibit, Breckenridge, CO, USA, 17–19 June 2002. AIAA 2002-2551. [Google Scholar]
- Arguillat, B.; Ricot, D.; Robert, G.; Bailly, C. Measurements of the wavenumber-frequency spectrum of wall pressure fluctuations under turbulent flows. In Proceedings of the 11th AIAA/CEAS Aeroacoustics Conference, Monterey, CA, USA, 23–25 May 2005; pp. 722–739. [Google Scholar]
- Van, H.; Fran, O.; Bordji, M.; Baresch, D.; Lafon, P. Wavenumber-frequency analysis of the wall pressure fluctuations in the wake of a car side mirror. In Proceedings of the 17th AIAA/CEAS Aeroacoustics Conference, Portland, OR, USA, 5–8 June 2011. Paper AIAA-2011-2936. [Google Scholar]
- Chase, D.M. Modeling the wavevector-frequency spectrum of turbulent boundary layer wall pressure. J. Sound Vib. 1980, 70, 29–67. [Google Scholar] [CrossRef]
- Corcos, G.M. Resolution of pressure in turbulence. J. Acoust. Soc. Am. 1963, 35, 192–199. [Google Scholar] [CrossRef]
- Efimtsov, B.M. Characteristics of the field of turbulent wall pressure fluctuations at large Reynolds numbers. Sov. Phys. Acoust. 1982, 28, 289–292. [Google Scholar]
- Birgersson, F.; Finnveden, S. A spectral super element for modelling of plate vibration. Part 2: Turbulence excitation. J. Sound Vib. 2005, 287, 315–328. [Google Scholar] [CrossRef]
- Ichchou, M.; Hiverniau, B.; Troclet, B. Equivalent ‘rain on the roof’ loads for random spatially correlated excitations in the mid-high frequency range. J. Sound Vib. 2009, 322, 926–940. [Google Scholar] [CrossRef]
- Chronopoulos, D.; Ichchou, M.; Troclet, B.; Bareille, O. Predicting the broadband vibroacoustic response of systems subject to aeroacoustic loads by a Krylov subspace reduction. Appl. Acoust. 2013, 74, 1394–1405. [Google Scholar] [CrossRef]
- Ciappi, E.; De Rosa, S.; Franco, F.; Vitiello, P.; Miozzi, M. On the dynamic behavior of composite panels under turbulent boundary layer excitations. J. Sound Vib. 2016, 364, 77–109. [Google Scholar] [CrossRef]
- Marchetto, C.; Maxit, L.; Robin, O.; Berry, A. Vibroacoustic response of panels under diffuse acoustic field excitation from sensitivity functions and reciprocity principles. J. Acoust. Soc. Am. 2017, 141, 4508–4521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hekmati, A.; Ricot, D.; Druault, P. Vibroacoustic behavior of a plate excited by synthesized aeroacoustic pressure fields. In Proceedings of the 16th AIAA/CEAS Aeroacoustics Conference, Stockholm, Sweden, 7–9 June 2010; No. AIAA paper 2010-3950. pp. 3570–3580. [Google Scholar]
- Smith, M.; Iglesias, E.L.; Bremner, P.G.; Mendonca, F. Validation tests for flow induced excitation and noise radiation from a car window. In Proceedings of the 18th AIAA/CEAS Aeroacoustics Conference, Colorado Springs, CO, USA, 4–6 June 2012. No. AIAA paper 2012-2201. [Google Scholar]
- Bremner, P.G. Vibroacoustic source mechanisms under aeroacoustic loads. In Proceedings of the 18th AIAA/CEAS Aeroacoustics Conference, Colorado Springs, CO, USA, 4–6 June 2012. No. AIAA paper 2012-2206. [Google Scholar]
- Mendonca, F.G.; Shaw, T.; Mueller, A.; Bremner, P.; Clifton, S. CFD-Based Wave-Number Analysis of Side-View Mirror Aeroacoustics Towards Aero-Vibroacoustic Interior Noise Transmission; SAE Technical Papers; SAE: Warrendale, PA, USA, 2013. [Google Scholar]
- Blanchet, D.; Golota, A.; Zerbib, N.; Mebarek, L. Wind Noise Source Characterization and How It Can Be Used to Predict Vehicle Interior Noise; SAE Technical Papers; SAE: Warrendale, PA, USA, 2014. [Google Scholar]
- Mendonca, F.G.; Connelly, T.; Bonthu, S.; Shorter, P. CAE-Based Prediction of Aero-Vibro-Acoustic Interior Noise Transmission for a Simple Test Vehicle; SAE Technical Papers; SAE: Warrendale, PA, USA, 2014. [Google Scholar]
- Smagorinsky, J. General circulation experiments with the primitive equations: I. the basic experiment. Mon. Weather Rev. 1963, 91, 99–164. [Google Scholar] [CrossRef]
- Graham, W.R. A comparison of models for the wavenumber-frequency spectrum of turbulent boundary layer pressures. J. Sound Vib. 1997, 206, 541–565. [Google Scholar] [CrossRef]
- LeVitte, E. Réponse D’une Plaque Couplée à une Cavite Acoustique par un Écoulement Turbulent. Master’s Thesis, Université de Sherbrooke, Sherbrooke, CA, USA, 1997. [Google Scholar]
- VA One. The ESI Group. 2015. Available online: http://www.esi-group.com (accessed on 17 December 2019).
- Strumolo, G.S. The Wind Modeller; SAE Paper 971921; SAE: Warrendale, PA, USA, 1997. [Google Scholar]
- Hwang, Y.F.; Maidanik, G. A wavenumber analysis of the coupling of a structural mode and flow turbulence. J. Sound Vib. 1990, 142, 135–152. [Google Scholar] [CrossRef]
- Bauchau, O.A.; Craig, J.I. Kirchhoff plate theory. In Structural Analysis; Solid mechanics and its applications; Springer: Dordrecht, The Netherlands; Heidelberg, Germany; New York, NY, USA; London, UK, 2009; Volume 163. [Google Scholar]
Parameter | Value |
---|---|
Length a/m | 0.8 |
Width b/m | 0.4 |
Thickness h/m | 0.004 |
Structural Damping Loss Factor | 0.01 |
Density /kg/m3 | 2700 |
Young modulus /N/m2 | |
Poisson’s ratio | 0.33 |
Boundary Name | Boundary Condition | Value |
---|---|---|
Inlet | Velocity-inlet | 40 m/s |
Outlet | Pressure-outlet | 0 Pa (Relative pressure) |
Side mirror | No-slip wall | - |
ground | No-slip wall | - |
Other surface | Symmetric | - |
Method | Calculation Time of Each Step | Total Time | ||||
---|---|---|---|---|---|---|
t | ||||||
Incompressible computation 5 days | Corcos coupling BEM | 668.5 s | 90.3 s | 40 h | 0.34 s | 160.211 h |
Deterministic modal force | 667.01 s | 104.63 s | 40 h | 252.97 s | 160.285 h | |
Random modal force | 660.13 s | 104.63 s | 40 h | 247.04 s | 160.281 h | |
Compressible Computation 16 days | Wavenumber decomposition | 259.53 s | 54.22 s | - | 0.23 s | 384.087 h |
Deterministic modal force | 667.01 s | 104.63 s | - | 95.90 s | 384.241 h | |
Random modal force | 660.13 s | 104.63 s | - | 114.08 s | 384.244 h |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, J.; Yang, J.; Wu, X.; Wang, C.; Deng, G. Study on Radiated Noise of a Panel under Fluctuating Surface Pressure Due to an Idealized Side Mirror. Appl. Sci. 2020, 10, 994. https://doi.org/10.3390/app10030994
Shao J, Yang J, Wu X, Wang C, Deng G. Study on Radiated Noise of a Panel under Fluctuating Surface Pressure Due to an Idealized Side Mirror. Applied Sciences. 2020; 10(3):994. https://doi.org/10.3390/app10030994
Chicago/Turabian StyleShao, Jianwang, Jinmeng Yang, Xian Wu, Cheng Wang, and Guoming Deng. 2020. "Study on Radiated Noise of a Panel under Fluctuating Surface Pressure Due to an Idealized Side Mirror" Applied Sciences 10, no. 3: 994. https://doi.org/10.3390/app10030994
APA StyleShao, J., Yang, J., Wu, X., Wang, C., & Deng, G. (2020). Study on Radiated Noise of a Panel under Fluctuating Surface Pressure Due to an Idealized Side Mirror. Applied Sciences, 10(3), 994. https://doi.org/10.3390/app10030994