Poplar Biochar as an Alternative Substrate for Curly Endive Cultivated in a Soilless System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biochar Treatments and Related Analysis
2.2. Plant Material and Growing Condition
2.3. Yield, Nutritional and Functional Properties
2.4. Experimental Design and Statistical Analysis
3. Results
3.1. Physicochemical Traits of Growing Substrates
3.2. Yield Traits
3.3. Nutritional and Functional Properties
3.4. PCA Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, Q.; Chen, J.; Caldwell, R.D.; Deng, M. Cowpeat as a substitute for peat in container substrates for foliage plant propagation. Horttechnology 2009, 19, 340–345. [Google Scholar] [CrossRef] [Green Version]
- Maher, M.; Prasad, M.; Raviv, M. Organic soilless media components. In Soilless Culture: Theory and Practice, 2nd ed.; Raviv, M., Lieth, J.H., Eds.; Andre Gerhard Wolffe: Amsterdam, The Netherlands, 2008; pp. 459–504. Available online: https://books.google.it/books?hl=it&lr=&id=6bKPDwAAQBAJ&oi=fnd&pg=PP1&dq=Soilless+culture:+Theory+and+practice&ots=NXBYiJRr3b&sig=rtWOQhArGjSaDhF9YnhY4NBmrfk&redir_esc=y#v=onepage&q=Soilless%20culture%3A%20Theory%20and%20practice&f=false (accessed on 12 December 2019).
- Gruda, N.S. Increasing Sustainability of Growing Media Constituents and Stand-Alone Substrates in Soilless Culture Systems. Agronomy 2019, 9, 298. [Google Scholar] [CrossRef] [Green Version]
- Baiamonte, G.; Crescimanno, G.; Parrino, F.; De Pasquale, C. Effect of biochar on the physical and structural properties of a desert sandy soil. Catena 2019, 175, 294–303. [Google Scholar] [CrossRef]
- Verheijen, F.; Jeffery, S.; Bastos, A.C.; van der Velde, M.; Diafas, I. Biochar Application to Soils—A Critical Scientific Review of Effects on Soil Properties, Processes and Functions; Office for the Official Publications of the European Communities Publisher: Luxemburg, 2010; pp. 1–166. Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC55799 (accessed on 9 November 2019).
- Zhang, J.; Liu, J.; Liu, R. Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lignosulfonate. Bioresour. Technol. 2015, 176, 288–291. [Google Scholar] [CrossRef] [PubMed]
- Dumroese, R.K.; Heiskanen, J.; Englund, K.; Tervahauta, A. Pelleted biochar: Chemical and physical properties show potential use as a substrate in container nurseries. Biomass Bioenerg. 2011, 35, 2018–2027. [Google Scholar] [CrossRef]
- Spokas, K.A.; Koskinen, W.C.; Baker, J.M.; Reicosky, D.C. Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere 2009, 77, 574–581. [Google Scholar] [CrossRef]
- Chan, K.Y.; Van Zwieten, L.; Meszaros, I.; Downie, A.; Joseph, S. Agronomic values of green waste biochar as a soil amendment. Aust. J. Soil Res. 2007, 45, 629–634. Available online: http://www.publish.csiro.au/sr/sr07109 (accessed on 5 December 2019). [CrossRef]
- Rogovska, N.; Laird, D.; Cruse, R.; Trabue, S.L.; Heaton, E. Germination tests for assessing biochar quality. J. Environ. Qual. 2012, 41, 1014–1022. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.; Zhao, Y.; Dou, H.; Cai, X.; Gu, M.; Yu, F. Effects of biocharmixtures with pine-barkbasedsubstrates on growth and development of horticultural crops. Hortic. Environ. Biotechnol. 2018, 59, 345–354. [Google Scholar] [CrossRef]
- D’Antuono, L.F.; Ferioli, F.; Manco, M.A. The impact of sesquiterpene lactones and phenolics on sensory attributes: An investigation of a curly endive and escarole germplasm collection. Food Chem. 2016, 199, 238–245. [Google Scholar] [CrossRef]
- Moncada, A.; Miceli, A.; Sabatino, L.; Iapichino, G.; D’Anna, F.; Vetrano, F. Effect of molybdenum rate on yield and quality of lettuce, escarole, and curly endive grown in a floating system. Agronomy 2018, 8, 171. [Google Scholar] [CrossRef] [Green Version]
- Sabatino, L.; Ntatsi, G.; Iapichino, G.; D’Anna, F.; de Pasquale, C. Effect of selenium enrichment and type of application on yield, functional quality and mineral composition of curly endive grown in a hydroponic system. Agronomy 2019, 9, 207. [Google Scholar] [CrossRef] [Green Version]
- Dispenza, V.; de Pasquale, C.; Fascella, G.; Mammano, M.M.; Alonzo, G. Use of biochar as peat substitute for growing substrates of Euphorbia× lomi potted plants. Span. J. Agric. Res. 2016, 14, 21. [Google Scholar] [CrossRef] [Green Version]
- Sonneveld, C.; Voogt, W. Plant Nutrition of Greenhouse Crops; Springer: New York, NY, USA, 2009. [Google Scholar]
- Boztok, K.; Sevgican, A.; Yoltas, T. Solar radyasyon esas alinarak yapilan farkly seviyelerde sulamanin sera domates (Lycopersicon esculentum Mill.) yetis tiriciliginde ürüne etkileri. Ege Ün. Ziraat Fak Derg 1984, 21, 19–24. [Google Scholar]
- Gül, A.; Sevgican, A. Effect of growing media on glasshouse tomato yield and quality. Rot. Cultiv. XXIII IHC 1990, 303, 145–150. [Google Scholar] [CrossRef]
- Han, C.; Zhao, Y.; Leonard, S.W.; Traber, M. Edible coatings to improve storability and enhance nutritional value of fresh and frozen strawberries (Fragaria x ananassa) and raspberries (Rubus ideaus). Postharvest Biol. Technol. 2008, 33, 67–78. [Google Scholar] [CrossRef]
- Slinkard, K.; Singleton, V.L. Total phenol analyses: Automation and comparison with manual methods. Am. J. Enol. Viticult. 1997, 28, 49–55. [Google Scholar]
- Rivero, R.M.; Ruiz, J.M.; Garcia, P.C.; López-Lefebre, L.R.; Sánchez, E.; Romero, L. Resistance to cold and heat stress: Accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci. 2001, 160, 315–321. [Google Scholar] [CrossRef]
- Fogg, D.N.; Wilkinson, N.T. The colorimetric determination of phosphorus. Analist 1958, 83, 406–414. [Google Scholar] [CrossRef]
- Morand, P.; Gullo, J.L. Mineralisation des tissus vegetaux en vue du dosage de P., Ca, Mg, Na, K. Ann. Agron. 1970, 21, 229–236. [Google Scholar]
- Tian, Y.; Sun, X.; Li, S.; Wang, H.; Wang, L.; Cao, J.; Zhang, L. Biochar made from green waste as peat substitute in growth media for Calathea rotundifola cv. Fasciata. SciHort 2012, 143, 15–18. [Google Scholar] [CrossRef]
- Tesi, R. Orticoltura Mediterranea Sostenibile; Pàtron Editore: Bologna, Italy, 2010. [Google Scholar]
- Conz, R.F.; Abbruzzini, T.F.; de Andrade, C.A.; Milori, D.M.B.P.; Cerri, C.E.P. Effect of Pyrolysis Temperature and Feedstock Type on Agricultural Properties and Stability of Biochars. Agric. Sci. 2017, 8, 914–933. [Google Scholar] [CrossRef] [Green Version]
- Kloss, S.; Zehetner, F.; Dellantonio, A.; Hamid, R.; Ottner, F.; Liedtke, V.; Soja, G. Characterization of slow pyrolysis biochars: Effects of feedstocks and pyrolysis temperature on biochar properties. J. Environ. Qual. 2012, 41, 990–1000. [Google Scholar] [CrossRef] [PubMed]
- Oh, T.-K.; Choi, B.; Shinogi, Y.; Chikushi, J. Characterization of Biochar Derived from Three Types of Biomass. J. Fac. Agric. Kyushu Univ. 2012, 57, 61–66. [Google Scholar]
- Song, W.; Guo, M. Quality Variations of Poultry Litter Biochar Generated at Different Pyrolysis Temperatures. J. Anal. Appl. Pyrol. 2012, 94, 138–145. [Google Scholar] [CrossRef]
- Karami, N.; Clemente, R.; Moreno-Jiménez, E.; Lepp, N.W.; Beesley, L. Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. J. Hazard. Mater. 2011, 191, 41–48. [Google Scholar] [CrossRef]
- Altland, J.E.; Locke, J.C. Effect of biochar type on macronutrient retention and release from soilless substrate. Hort. Sci. 2013, 48, 1397–1402. [Google Scholar] [CrossRef] [Green Version]
- Bedussi, F.; Zaccheo, P.; Crippa, L. Pattern of pore water nutrients in planted and non-planted soilless substrates as affected by the addition of biochars from wood gasification. Biol. Fertil. Soils 2015, 51, 625–635. [Google Scholar] [CrossRef]
- Vaughn, S.F.; Kenar, J.A.; Thompson, A.R.; Peterson, S.C. Comparison of biochars derived from wood pellets and pelletized wheat straw as replacements for peat in potting substrates. Ind. Crops Prod. 2013, 51, 437–443. [Google Scholar] [CrossRef]
- Lehmann, J.; Da Silva, J.P.; Steiner, C.; Nehls, T.; Zech, W.; Glaser, B. Nutrient availability and leaching in an archaeological anthrosol and a ferralsol of the Central Amazon basin: Fertilizer, manure and charcoal amendments. Plant Soil 2003, 249, 343–357. [Google Scholar] [CrossRef]
- Yamato, M.; Okimori, Y.; Wibowo, I.F.; Anshori, S.; Ogawa, M. Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia. Soil Sci. Plant Nutr. 2006, 52, 489–495. [Google Scholar] [CrossRef]
- Rondon, M.A.; Lehmann, J.; Ramírez, J.; Hurtado, M. Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biol. Fertil. Soils 2007, 43, 699–708. [Google Scholar] [CrossRef]
- Zulfiqar, F.; Younis, A.; Chen, J. Biochar or biochar-compost amendment to a peat-based substrate improves growth of Syngonium podophyllum. Agronomy 2019, 9, 460. [Google Scholar] [CrossRef] [Green Version]
- Dixon, R.A.; Paiva, N.L. Stress-induced phenylpropanoid metabolism. Plant Cell 1995, 7, 1085–1097. [Google Scholar] [CrossRef]
- Moglia, A.; Lanteri, S.; Comino, C.; Acquadro, A.; de Vos, R.; Beekwilder, J. Stressinduced biosynthesis of dicaffeoylquinic acids in globe artichoke. J. Agric. Food Chem. 2008, 56, 8641–8649. [Google Scholar] [CrossRef]
- Maršič, N.K.; Mikulič-Petkovšek, M.; Štampar, F. Grafting influences phenolic profile and carpometric traits of fruits of greenhouse-grown eggplant (Solanum melongena L.). J. Agric. Food Chem. 2014, 62, 10504–10514. [Google Scholar] [CrossRef]
- Sabatino, L.; Iapichino, G.; Rotino, G.L.; Palazzolo, E.; Mennella, G.; D’Anna, F. Solanum aethiopicum gr. gilo and its interspecific hybrid with S. melongena as alternative rootstocks for eggplant: Effects on vigor, yield, and fruit physicochemical properties of cultivar ‘Scarlatti’. Agronomy 2019, 9, 223. [Google Scholar] [CrossRef] [Green Version]
- Awad, Y.M.; Lee, S.E.; Ahmed, M.B.M.; Vu, N.T.; Farooq, M.; Kim, I.S.; Kim, H.S.; Vithanageg, M.; Usmanh, A.R.A.; Meers, E.; et al. Biochar, a potential hydroponic growth substrate, enhances the nutritional status and growth of leafy vegetables. J. Clean. Prod. 2017, 156, 581–588. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, K.R.; Yang, J.E.; Ok, Y.S.; Kim, W.I.; Kunhikrishnan, A.; Kim, K.H. Amelioration of horticultural growing media properties through rice hull biochar incorporation. Waste Biomass Valori. 2017, 8, 483–492. [Google Scholar] [CrossRef]
- Lee, Y.; Krishnamoorthy, R.; Selvakumar, G.; Kim, K.; Sa, T. Alleviation of salt stress in maize plant by co-inoculation of arbuscular mycorrhizal fungi and Methylobacterium oryzae CBMB20. Appl. Biol. Chem. 2015, 58, 533–540. [Google Scholar] [CrossRef]
- Rehman, M.Z.U.; Rizwan, M.; Ali, S.; Fatima, N.; Yousaf, B.; Naeem, A.; Sabir, M.; Ahmad, H.R.; Ok, Y.S. Contrasting effects of biochar, compost and farm manure on alleviation of nickel toxicity in maize (Zea mays L.) in relation to plant growth, photosynthesis and metal uptake. Ecotoxicol. Environ. Saf. 2016, 133, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Sun, X.; Tian, Y.; Gong, X. Biochar and humic acid amendments improve the quality of composted green waste as a growth medium for the ornamental plant Calathea insignis. Sci. Hort. 2014, 176, 70–78. [Google Scholar] [CrossRef]
Treatments | Pyrolysis Temperature (°C) | Substrate Mixtures (v:v) |
---|---|---|
Peat | _ | 100% peat |
Biochar 20%_450 | 450 | 80% peat-20% biochar |
Biochar 20%_700 | 700 | 80% peat-20% biochar |
Biochar 40%_450 | 450 | 60% peat-40% biochar |
Biochar 40%_700 | 700 | 60% peat-40% biochar |
Biochar 70%_450 | 450 | 30% peat-70% biochar |
Biochar 70%_700 | 700 | 30% peat-70% biochar |
Biochar 100%_450 | 450 | 100% biochar |
Biochar 100%_700 | 700 | 100% biochar |
Treatments | pH | EC (mS m−1) | N (mg L−1) | P (mg L−1) | K (mg L−1) | Ca (mg L−1) | Mg (mg L−1) | Na (mg L−1) | Total Porosity (% v:v) | Particle Density (g/L) | Bulk Density (g/L) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Peat | 5.8 ± 0.1 | h | 12.5 ± 0.3 | h | 100.4 ± 0.8 | a | 30.7 ± 0.6 | a | 100.1 ± 1.3 | g | 104.4 ± 1.1 | a | 38.3 ± 1.0 | a | 18.2 ± 0.2 | a | 89.8 ± 0.3 | bc | 1604.3 ± 1.1 | g | 318.6 ± 1.4 | e |
Biochar 20%_450 | 6.1 ± 0.1 | g | 15.9 ± 0.3 | g | 68.2 ± 0.9 | b | 18.8 ± 0.4 | b | 117.7 ± 2.4 | f | 72.1 ± 2.1 | b | 18.8 ± 0.3 | b | 15.8 ± 0.4 | b | 90.1 ± 1.4 | bc | 1637.3 ± 2.6 | f | 355.6 ± 6.1 | d |
Biochar 20% _700 | 6.5 ± 0.1 | f | 16.9 ± 0.4 | f | 64.6 ± 0.5 | c | 18.8 ± 0.2 | b | 124.7 ± 2.1 | e | 71.2 ± 1.0 | b | 18.7 ± 0.6 | b | 15.7 ± 0.3 | b | 94.8 ± 2.5 | a | 1663.6 ± 12.2 | e | 355.3 ± 4.3 | d |
Biochar 40%_450 | 6.7 ± 0.1 | ef | 16.3 ± 0.2 | fg | 50.7 ± 1.4 | d | 16.7 ± 0.5 | c | 133.4 ± 0.9 | d | 55.4 ± 1.0 | c | 18.1 ± 0.6 | b | 14.4 ± 0.3 | c | 89.4 ± 0.9 | c | 1675.6 ± 3.1 | de | 432.7 ± 2.5 | c |
Biochar 40%_700 | 7.0 ± 0.1 | e | 18.9 ± 0.1 | e | 47.4 ± 1.0 | e | 16.4 ± 0.2 | c | 137.5 ± 2.0 | cd | 55.3 ± 0.8 | c | 18.1 ± 0.6 | b | 14.4 ± 0.3 | c | 93.7 ± 1.8 | abc | 1682.2 ± 2.6 | d | 432.7 ± 4.4 | c |
Biochar 70%_450 | 7.9 ± 0.1 | d | 25.8 ± 0.4 | d | 42.2 ± 1.1 | f | 5.5 ± 0.3 | d | 141.9 ± 1.1 | c | 21.2 ± 1.0 | d | 8.1 ± 0.1 | c | 10.0 ± 0.6 | d | 89.4 ± 1.8 | c | 1852.0 ± 1.5 | c | 534.7 ± 2.4 | b |
Biochar 70%_700 | 8.2 ± 0.1 | c | 28.8 ± 0.3 | c | 39.4 ± 0.4 | g | 5.7 ± 0.2 | d | 153.9 ± 1.6 | b | 21.2 ± 1.0 | d | 8.1 ± 0.2 | c | 10.0 ± 0.7 | d | 94.0 ± 1.7 | ab | 1866.3 ± 2.7 | b | 354.5 ± 1.6 | b |
Biochar 100%_450 | 8.6 ± 0.1 | b | 35.8 ± 0.1 | b | 37.4 ± 0.4 | gh | 3.8 ± 0.3 | e | 153.0 ± 2.2 | b | 16.5 ± 0.3 | e | 6.2 ± 0.3 | d | 7.5 ± 0.3 | e | 89.9 ± 1.0 | bc | 1872.3 ± 2.0 | b | 649.6 ± 3.8 | a |
Biochar 100%_700 | 9.1 ± 0.1 | a | 38.3 ± 0.4 | a | 35.2 ± 0.6 | h | 3.7 ± 0.4 | e | 161.2 ± 1.1 | a | 16.4 ± 0.2 | e | 6.4 ± 0.3 | d | 7.3 ± 0.2 | e | 94.0 ± 1.8 | ab | 1887.0 ± 2.4 | a | 650.6 ± 7.6 | a |
Significance | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** |
Treatments | Head Fresh Weight (kg m−2) | Head Height (cm) | Stem Diameter (mm) | Number of Leaves (no.) | Head Dry Matter Content (%) | Root Dry Matter Content (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Peat | 2.3 ± 0.1 | e | 23.7 ± 0.8 | f | 24.7 ± 0.6 | e | 45.3 ± 2.5 | f | 8.6 ± 0.1 | g | 2.0 ± 0.2 | f |
Biochar 20%_450 | 2.4 ± 0.1 | de | 25.7 ± 0.4 | de | 25.7 ± 0.6 | de | 55.2 ± 2.3 | e | 9.2 ± 0.3 | f | 2.2 ± 0.1 | de |
Biochar 20%_700 | 2.6 ± 0.1 | cd | 26.6 ± 0.2 | cde | 27.3 ± 0.6 | cd | 57.8 ± 2.3 | de | 9.8 ± 0.1 | e | 2.4 ± 0.1 | cd |
Biochar 40%_450 | 2.6 ± 0.1 | c | 27.2 ± 0.3 | c | 27.7 ± 0.6 | bc | 61.3 ± 1.1 | d | 10.3 ± 0.1 | cd | 2.4 ± 0.1 | cde |
Biochar 40%_700 | 2.9 ± 0.1 | b | 27.7 ± 0.3 | bc | 28.3 ± 0.6 | abc | 68.1 ± 1.0 | bc | 10.9 ± 0.1 | a | 2.5 ± 0.1 | bc |
Biochar 70%_450 | 3.0 ± 0.1 | b | 28.5 ± 0.4 | ab | 29.3 ± 0.6 | ab | 71.4 ± 1.2 | b | 10.5 ± 0.1 | bc | 2.7 ± 0.1 | ab |
Biochar 70%_700 | 3.3 ± 0.1 | a | 29.6 ± 0.6 | a | 30.0 ± 0.6 | a | 81.9 ± 2.7 | a | 10.9 ± 0.2 | a | 2.8 ± 0.1 | a |
Biochar 100%_450 | 2.4 ± 0.1 | e | 25.6 ± 0.6 | e | 25.3 ± 0.6 | e | 58.9 ± 1.2 | de | 10.0 ± 0.2 | de | 2.2 ± 0.1 | e |
Biochar 100%_700 | 2.6 ± 0.1 | cd | 26.9 ± 0.1 | cd | 27.7 ± 1.2 | bc | 63.0 ± 2.0 | cd | 10.4 ± 0.1 | c | 2.4 ± 0.1 | cde |
Significance | *** | *** | *** | *** | *** | *** |
Treatments | SSC (°Brix) | TA (%) | Ascorbic Acid (mg kg−1 f.w.) | Total Phenolic (mg of Caffeic Acid g−1 f.w.) | ||||
---|---|---|---|---|---|---|---|---|
Peat | 4.3 ± 0.1 | cd | 0.7 ± 0.1 | a | 69.5 ± 3.3 | e | 0.57 ± 0.04 | ef |
Biochar 20%_450 | 4.4 ± 0.1 | bc | 0.6 ± 0.2 | a | 83.3 ± 2.7 | d | 0.64 ± 0.02 | de |
Biochar 20%_700 | 4.2 ± 0.1 | d | 0.6 ± 0.1 | a | 81.7 ± 2.9 | d | 0.53 ± 0.01 | f |
Biochar 40%_450 | 4.6 ± 0.1 | b | 0.6 ± 0.1 | a | 90.6 ± 1.5 | bc | 0.76 ± 0.02 | bc |
Biochar 40%_700 | 4.3 ± 0.1 | cd | 0.6 ± 0.1 | a | 85.9 ± 1.5 | cd | 0.67 ± 0.03 | cd |
Biochar 70%_450 | 4.8 ± 0.1 | a | 0.7 ± 0.1 | a | 103.2 ± 2.1 | a | 0.92 ± 0.03 | a |
Biochar 70%_700 | 4.6 ± 0.1 | b | 0.7 ± 0.2 | a | 96.1 ± 0.9 | b | 0.88 ± 0.04 | b |
Biochar 100%_450 | 4.3 ± 0.1 | cd | 0.7 ± 0.1 | a | 87.1 ± 2.7 | cd | 0.95 ± 0.04 | a |
Biochar 100%_700 | 4.2 ± 0.1 | d | 0.7 ± 0.1 | a | 82.0 ± 2.3 | d | 0.81 ± 0.02 | b |
Significance | *** | NS | *** | *** |
Treatments | N (mg g−1 DW) | P (mg g−1 DW) | K (mg g−1 DW) | Ca (mg g−1 DW) | Mg (mg g−1 DW) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Peat (PE) | 6.42 ± 0.11 | a | 0.63 ± 0.03 | a | 2.92 ± 0.03 | f | 0.75 ± 0.03 | b | 0.37 ± 0.01 | a |
Biochar 20%_450 (BC24) | 4.85 ± 0.10 | b | 0.63 ± 0.01 | a | 3.07 ± 0.06 | e | 0.68 ± 0.02 | cd | 0.35 ± 0.02 | a |
Biochar 20%_700 (BC27) | 6.66 ± 0.08 | bc | 0.62 ± 0.01 | a | 3.21 ± 0.02 | d | 0.82 ± 0.02 | a | 0.35 ± 0.01 | a |
Biochar 40%_450 (BC44) | 4.44 ± 0.13 | cd | 0.63 ± 0.03 | a | 3.30 ± 0.06 | d | 0.62 ± 0.02 | ef | 0.35 ± 0.01 | a |
Biochar 40%_700 (BC47) | 4.27 ± 0.10 | de | 0.62 ± 0.03 | a | 3.44 ± 0.02 | c | 0.72 ± 0.02 | bc | 0.35 ± 0.01 | a |
Biochar 70%_450 (BC74) | 4.13 ± 0.08 | e | 0.62 ± 0.03 | a | 3.65 ± 0.03 | b | 0.55 ± 0.03 | g | 0.33 ± 0.01 | a |
Biochar 70%_700 (BC77) | 3.81 ± 0.10 | f | 0.62 ± 0.01 | a | 3.71 ± 0.03 | b | 0.62 ± 0.01 | de | 0.36 ± 0.01 | a |
Biochar 100%_450 (BC14) | 3.52 ± 0.08 | g | 0.64 ± 0.02 | a | 3.87 ± 0.02 | a | 0.42 ± 0.03 | h | 0.35 ± 0.01 | a |
Biochar 100%_700 (BC17) | 3.23 ± 0.12 | h | 0.64 ± 0.03 | a | 3.96 ± 0.02 | a | 0.56 ± 0.02 | fg | 0.35 ± 0.02 | a |
Significance | *** | NS | *** | *** | NS |
Variable | PC1 | PC2 | PC3 | PC4 |
---|---|---|---|---|
pH | 0.922 | −0.307 | −0.201 | 0.077 |
EC | 0.851 | −0.444 | −0.247 | 0.053 |
Nsubstrate * (N-s) | −0.957 | −0.049 | 0.087 | 0.168 |
Psubstrate * (P-s) | −0.981 | 0.130 | 0.026 | 0.087 |
Ksubstrate * (K-s) | 0.963 | −0.086 | −0.225 | −0.002 |
Casubstrate * (Ca-s) | −0.991 | 0.124 | −0.001 | 0.027 |
Mgsubstrate * (Mg-s) | −0.954 | 0.027 | 0.055 | 0.237 |
Nasubstrate * (Na-s) | −0.932 | 0.345 | 0.077 | −0.008 |
Total porosity (TP) | 0.210 | 0.434 | −0.863 | 0.038 |
Particle density (PD) | 0.937 | −0.243 | −0.038 | 0.130 |
Bulk density (BD) | 0.896 | −0.425 | −0.099 | 0.047 |
Head fresh weight (HFW) | 0.592 | 0.745 | 0.013 | 0.303 |
Head height (HH) | 0.745 | 0.655 | 0.045 | 0.071 |
Stem diameter (SD) | 0.659 | 0.711 | 0.025 | 0.122 |
Number of leaves (NL) | 0.790 | 0.571 | 0.002 | 0.207 |
Head dry matter content (HDMC) | 0.831 | 0.446 | −0.107 | 0.038 |
Root dry matter content (RDMC) | 0.692 | 0.703 | 0.075 | 0.080 |
SSC | 0.352 | 0.366 | 0.846 | 0.115 |
TA | 0.458 | −0.678 | 0.245 | 0.490 |
Ascorbic acid (AA) | 0.763 | 0.404 | 0.488 | −0.090 |
Total Phenolic (TPC) | 0.837 | −0.377 | 0.377 | 0.030 |
Nleaves ** (N-l) | −0.929 | 0.064 | 0.233 | 0.224 |
Pleaves ** (P-l) | 0.034 | −0.958 | 0.047 | 0.105 |
Kleaves ** (K-l) | 0.947 | −0.242 | −0.187 | 0.036 |
Caleaves ** (Ca-l) | −0.726 | 0.584 | −0.324 | −0.005 |
Mgleaves ** (Mg-l) | −0.604 | −0.062 | −0.305 | 0.683 |
Eigenvalue | 16.270 | 5.613 | 2.389 | 1.077 |
Variance % | 62.576 | 21.589 | 9.189 | 4.140 |
Cumulative % | 62.576 | 84.165 | 93.354 | 97.494 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabatino, L.; Iapichino, G.; Mauro, R.P.; Consentino, B.B.; De Pasquale, C. Poplar Biochar as an Alternative Substrate for Curly Endive Cultivated in a Soilless System. Appl. Sci. 2020, 10, 1258. https://doi.org/10.3390/app10041258
Sabatino L, Iapichino G, Mauro RP, Consentino BB, De Pasquale C. Poplar Biochar as an Alternative Substrate for Curly Endive Cultivated in a Soilless System. Applied Sciences. 2020; 10(4):1258. https://doi.org/10.3390/app10041258
Chicago/Turabian StyleSabatino, Leo, Giovanni Iapichino, Rosario Paolo Mauro, Beppe Benedetto Consentino, and Claudio De Pasquale. 2020. "Poplar Biochar as an Alternative Substrate for Curly Endive Cultivated in a Soilless System" Applied Sciences 10, no. 4: 1258. https://doi.org/10.3390/app10041258
APA StyleSabatino, L., Iapichino, G., Mauro, R. P., Consentino, B. B., & De Pasquale, C. (2020). Poplar Biochar as an Alternative Substrate for Curly Endive Cultivated in a Soilless System. Applied Sciences, 10(4), 1258. https://doi.org/10.3390/app10041258