Multiple-Collision Free-Electron Laser Compton Backscattering for a High-Yield Gamma-Ray Source
Abstract
:1. Introduction
2. Materials and Methods
2.1. Backward Compton Scattering
2.2. Description of the Multiple-Collision FEL-Compton Backscattering Gamma Rays
3. Results
3.1. Experimental Setup Using the Infrared FEL System in the NIJI-IV
3.2. Measured Spectra of the FEL-Compton Backscattering Gamma Rays Generated at Each Collision Point
3.3. Demonstration of the Multiple-Collision FEL-Compton Backscattering
4. Discussion
4.1. Spectra of Multiple-Collision FEL-Compton Backscattering
4.2. Spatial Distribution of Multiple-Collision FEL-Compton Backscattering
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Feenberg, E.; Primakoff, H. Interaction of Cosmic-Ray Primaries with Sunlight and Starlight. Phys. Rev. 1948, 73, 449–469. [Google Scholar] [CrossRef]
- Birkinshaw, M. The Sunyaev–Zel’dovich effect. Phys. Rep. 1999, 310, 97–195. [Google Scholar] [CrossRef] [Green Version]
- Sei, N.; Takahashi, T. Terahertz-Wave Spectrophotometry by Compton Backscattering of Coherent Transition Radiation. Appl. Phys. Express 2010, 3. [Google Scholar] [CrossRef]
- Sei, N.; Takahashi, T. Verification of terahertz-wave spectrophotometry by Compton backscattering of coherent synchrotron radiation. Phys. Lett. A 2014, 378, 303–307. [Google Scholar] [CrossRef]
- Milburn, R.H. Electron Scattering by an Intense Polarized Photon Field. Phys. Rev. Lett. 1963, 10, 75–77. [Google Scholar] [CrossRef] [Green Version]
- Gales, S.; Tanaka, K.A.; Balabanski, D.L.; Negoita, F.; Stutman, D.; Tesileanu, O.; Ur, C.A.; Ursescu, D.; Andrei, I.; Ataman, S.; et al. The extreme light infrastructure—nuclear physics (ELI-NP) facility: New horizons in physics with 10 PW ultra-intense lasers and 20 MeV brilliant gamma beams. Rep. Prog. Phys. 2018, 81. [Google Scholar] [CrossRef]
- Federici, L.; Giordano, G.; Matone, G.; Pasquariello, G.; Picozza, P.G.; Caloi, R.; Casano, L.; De Pascale, M.P.; Mattioli, M.; Poldi, E.; et al. Backward Compton scattering of laser light against high-energy electrons: The LADON photon beam at Frascati. Nuovo Cim. 1980, 59, 247–256. [Google Scholar] [CrossRef]
- Ohgaki, H.; Noguchi, T.; Sugiyama, S.; Yamazaki, T.; Mikado, T.; Chiwaki, M.; Yamada, K.; Suzuki, R.; Sei, N. Linearly polarized photons from Compton backscattering of laser light for nuclear resonance fluorescence experiments. Nucl. Instrum. Methods Phys. A 1994, 353, 384–388. [Google Scholar] [CrossRef]
- Miyamoto, S.; Asano, Y.; Amano, S.; Li, D.; Imasaki, K.; Kinugasa, H.; Shoji, Y.; Takagi, T.; Mochizuki, T. Laser Compton back-scattering gamma-ray beamline on NewSUBARU. Radiat. Meas. 2007, 41, S179–S185. [Google Scholar] [CrossRef]
- Bruni, C.; Artemiev, N.; Roux, R.; Variola, A.; Zomer, F.; Loulergue, A. ThomX: A high flux compact X ray source. In Proceedings of the 10th Symposium on Coherent and Incoherent Sources UV, VUV and X (UVX 2010); EDP Sciences: Porquerolles, France, 2010; pp. 49–55. [Google Scholar]
- Akagi, T.; Kosuge, A.; Araki, S.; Hajima, R.; Honda, Y.; Miyajima, T.; Mori, M.; Nagai, R.; Nakamura, N.; Shimada, M.; et al. Narrow-band photon beam via laser Compton scattering in an energy recovery linac. Phys. Rev. Accel. Beams 2016, 19, 19. [Google Scholar] [CrossRef] [Green Version]
- Deitrick, K.E.; Krafft, G.A.; Terzić, B.; Delayen, J.R. High-brilliance, high-flux compact inverse Compton light source. Phys. Rev. Accel. Beams 2018, 21. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Wang, J.; Feng, J.; Li, Y.; Li, D.; Li, M.; He, Y.; Ma, J.; Tan, J.; Zhang, B.; et al. Inverse Compton scattering x-ray source from laser electron accelerator in pure nitrogen with 15 TW laser pulses. Plasma Phys. Control. Fusion 2019, 61. [Google Scholar] [CrossRef]
- Glotin, F.; Ortega, J.M.; Prazeres, R.; Devanz, G.; Marcouillé, O. Tunable X-rays generation in a free-electron laser by intracavity Compton backscattering. Phys. Rev. Lett. 1996, 77, 3130–3132. [Google Scholar] [CrossRef] [PubMed]
- Litvinenko, V.N.; Burnham, B.; Emamian, M.; Hower, N.; Madey, J.M.J.; Morcombe, P.; O’Shea, P.G.; Park, S.H.; Sachtschale, R.; Straub, K.D.; et al. Gamma-Ray Production in a Storage Ring Free-Electron Laser. Phys. Rev. Lett. 1997, 78, 4569–4572. [Google Scholar] [CrossRef]
- Hosaka, M.; Hama, H.; Kimura, K.; Yamazaki, J.; Kinoshita, T. Observation of intracavity Compton backscattering of the UVSOR free electron laser. Nucl. Instrum. Methods Phys. Res. Sect. A 1997, 393, 525–529. [Google Scholar] [CrossRef]
- Nutarelli, D.; Couprie, M.E.; Nahon, L.; Bakker, R.; Delboulbe, A.; Roux, R.; Visentin, B.; Billardon, M. Gamma rays production by intra-cavity Compton Back Scattering with Super-ACO Storage Ring Free Electron Laser. Nucl. Instrum. Methods Phys. Res. Sect. A 1998, 407, 459–463. [Google Scholar] [CrossRef]
- Yamazaki, T.; Yamada, K.; Sei, N.; Ohgaki, H.; Sugiyama, S.; Suzuki, R.; Mikado, T.; Noguchi, T.; Chiwaki, M.; Ohdaira, T.; et al. SRFEL, FEL-X project, and applications at the ETL. Nucl. Instrum. Methods Phys. Res. Sect. B 1998, 144, 83–89. [Google Scholar] [CrossRef]
- Boyce, J.R.; Benson, S.V.; Bohn, C.L.; Douglas, D.R.; Dylla, H.F.; Gubeli, J.F.; Happek, U.; Jordan, K.; Krafft, G.A.; Neil, G.R.; et al. The Jefferson Lab Sub-picosecond X-ray Program. AIP Conf. Proc. 2003, 680, 325–328. [Google Scholar]
- Sei, N.; Ogawa, H.; Yamada, K. Multi-range free-electron laser with a pair of dielectric multilayer mirrors. Appl. Phys. Lett. 2012, 101. [Google Scholar] [CrossRef]
- Weller, H.R.; Ahmed, M.W.; Gao, H.; Tornow, W.; Wu, Y.K.; Gai, M.; Miskimen, R. Research opportunities at the upgraded HIγS facility. Prog. Part. Nucl. Phys. 2008, 62, 257–303. [Google Scholar] [CrossRef]
- Litvinenko, V.N.; Mikhailov, S.F.; Shevchenko, O.A.; Vinokurov, N.A.; Gavrilov, N.G.; Kulipanov, G.N.; Shaftan, T.V.; Vobly, P.D.; Wu, Y. The OK-5/Duke storage ring VUV FEL with variable polarization. Nucl. Instrum. Methods Phys. Res. Sect. A 2001, 475, 407–416. [Google Scholar] [CrossRef]
- Sei, N.; Ogawa, H.; Yamada, K. Lasing of infrared free-election lasers using the storage ring NIJI-IV. Opt. Lett. 2009, 34, 1845–1847. [Google Scholar] [CrossRef] [PubMed]
- Di Piazza, A.; Hatsagortsyan, K.Z.; Keitel, C.H. Quantum Radiation Reaction Effects in Multiphoton Compton Scattering. Phys. Rev. Lett. 2010, 105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yorozu, M. Studies on Short-Pulse-X-Ray Generation by Laser-Compton Scattering Scheme. Ph.D. Thesis, Faculty of Science, Waseda University, Tokyo, Japan, 2005. [Google Scholar]
- Sei, N.; Ogawa, H.; Okuda, S. Demonstration of narrowband X-ray beam by inverse Compton scattering with stored spontaneous emission. J. Appl. Phys. 2017, 121. [Google Scholar] [CrossRef]
- Krafft, G.A.; Priebe, G. Compton sources of electromagnetic radiation. Rev. Accel. Sci. Technol. 2010, 3, 147–163. [Google Scholar] [CrossRef]
- Arutyunian, F.R.; Tumanian, V.A. The Compton effect on relativistic electrons and the possibility of obtaining high energy beams. Phys. Lett. 1963, 4, 176–178. [Google Scholar] [CrossRef]
- Yamazaki, T.; Yamada, K.; Sugiyama, S.; Ohgaki, H.; Sei, N.; Mikado, T.; Noguchi, T.; Chiwaki, M.; Suzuki, R.; Kawai, M.; et al. First lasing of the NIJI-IV storage-ring free-electron laser. Nucl. Instrum. Methods Phys. Res. Sect. A 1993, 331, 27–33. [Google Scholar] [CrossRef]
- Sei, N.; Ogawa, H.; Yamada, K. Third harmonic lasing in a storage ring free-electron laser. J. Phys. Soc. Jpn. 2010, 79. [Google Scholar] [CrossRef]
- Sei, N.; Ogawa, H.; Jia, Q. Switching of the harmonic order in free-electron lasers by controlling the density modulation of an electron bunch. J. Synchrotron Rad. 2018, 25, 1317–1322. [Google Scholar] [CrossRef]
- Sei, N.; Ohgaki, H.; Mikado, T.; Yamada, K. Design of a New Optical Klystron for Developing Infrared Free Electron Lasers in the Storage Ring NIJI-IV. Jpn. J. Appl. Phys. 2003, 41, 1595–1601. [Google Scholar] [CrossRef]
- Sacherer, F.J. A Longitudinal Stability Criterion for Bunched Beams. IEEE Trans. Nucl. Sci. 1973, 20, 825–829. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, H.; Sei, N.; Yamada, K. Asymmetric two-bunch operation of free-electron laser and generation of inverse Compton photons. Phys. Lett. A 2012, 376, 1171–1175. [Google Scholar] [CrossRef]
- Sei, N.; Ogawa, H.; Yamada, K. Wide-Range Third Harmonic Oscillations in Free-Electron Lasers Using the Storage Ring NIJI-IV. J. Phys. Soc. Jpn. 2012, 81. [Google Scholar] [CrossRef]
- Sei, N.; Ogawa, H.; Yamada, K.; Koike, M.; Ohgaki, H. Spectral modulation of higher harmonic spontaneous emission from an optical klystron. J. Synchrotron Rad. 2014, 21, 654–661. [Google Scholar] [CrossRef] [PubMed]
- Sei, N.; Ogawa, H.; Yamada, K. Lasing of middle-infrared free-election lasers using the storage ring NIJI-IV. Opt. Lett. 2011, 36, 3645–3647. [Google Scholar] [CrossRef] [PubMed]
- Hirayama, H.; Namito, Y.; Bielajew, A.F.; Wilderman, S.J.; Nelson, W.R. The EGS5 Code System. In SLAC-R-730 and KEK Report; Stanford University: Stanford, CA, USA, 2005; Volume 2005–2008, p. 20. [Google Scholar]
- Elleaume, P. Macro-temporal structure of storage ring free electron lasers. J. Phys. 1984, 45, 997–1001. [Google Scholar] [CrossRef] [Green Version]
- Park, S.H.; Litvinenko, V.N.; Tornow, W.; Montgomery, C. Spatial distribution and polarization of γ-rays generated via Compton backscattering in the Duke/OK-4 storage ring FEL. Nucl. Instrum. Methods Phys. Res. Sect. A 2001, 475, 425–431. [Google Scholar] [CrossRef]
- Yan, J.; Mueller, J.M.; Ahmed, M.W.; Hao, H.; Huang, S.; Li, J.; Litvinenko, V.N.; Liu, P.; Mikhailov, S.F.; Popov, V.G.; et al. Precision control of gamma-ray polarization using a crossed helical undulator free-electron laser. Nat. Photon. 2017, 13, 629–635. [Google Scholar] [CrossRef]
- Hajima, R.; Hayakawa, T.; Kikuzawa, N.; Minehara, E. Proposal of Nondestructive Radionuclide Assay Using a High-Flux Gamma-Ray Source and Nuclear Resonance Fluorescence. J. Nucl. Sci. Technol. 2008, 45, 441–451. [Google Scholar] [CrossRef]
- Litvinenko, V.N.; Ben-Zvi, I.; Kayran, D.; Pogorelsky, I.; Pozdeyev, E.; Roser, T.; Yakimenko, V. Potential Uses of ERL-Basedγ-Ray Sources. IEEE Trans. Plasma Sci. 2008, 36, 1799–1807. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sei, N.; Ogawa, H.; Jia, Q. Multiple-Collision Free-Electron Laser Compton Backscattering for a High-Yield Gamma-Ray Source. Appl. Sci. 2020, 10, 1418. https://doi.org/10.3390/app10041418
Sei N, Ogawa H, Jia Q. Multiple-Collision Free-Electron Laser Compton Backscattering for a High-Yield Gamma-Ray Source. Applied Sciences. 2020; 10(4):1418. https://doi.org/10.3390/app10041418
Chicago/Turabian StyleSei, Norihiro, Hiroshi Ogawa, and QiKa Jia. 2020. "Multiple-Collision Free-Electron Laser Compton Backscattering for a High-Yield Gamma-Ray Source" Applied Sciences 10, no. 4: 1418. https://doi.org/10.3390/app10041418
APA StyleSei, N., Ogawa, H., & Jia, Q. (2020). Multiple-Collision Free-Electron Laser Compton Backscattering for a High-Yield Gamma-Ray Source. Applied Sciences, 10(4), 1418. https://doi.org/10.3390/app10041418