Rotary Ultrasonic Machining of Alumina Ceramic: An Experimental Investigation of Tool Path and Tool Overlapping
Abstract
:1. Introduction
2. Materials and Method
2.1. Experimental Procedure
2.2. Measurement Procedure
3. Results and Analysis
3.1. Tool Overlapping Results
3.2. Tool Path Strategies Results
3.3. Dimensional Accuracy
3.4. Tool Wear
4. Conclusions
- The tool overlapping had significant effects on the surface roughness of the milled pockets. The surface roughness decreased with the increasing of tool overlapping percentage.
- Like roughness, the surface morphology varied considerably with the change of the tool overlapping. SEM images show that the smooth surface morphology was found at the higher levels of tool overlapping percentage (20–25%).
- The tool path strategies played an important role in surface Ra, Rt and MRR. The best values of Ra = 0.155 µm and Rt = 1.432 µm could be achieved by employing a mix of uni-directional and zigzag tool path strategy (Mix-2), along with the tool overlapping of 20%.
- The maximum MRR (0.49 mm3/min) could be attained at the spiral and Mix-1 milling strategies. This was because the surface area of the machined pockets was fully machined (with no un-machined regions) while applying these two path strategies.
- In general, it was inferred that RUM could be used for fabricating pockets in Al2O3 with smooth surface finish and high dimensional accuracy.
- Several tool wear types were observed during RUM including bond fracture, rounding of the tool edge and plastic deformation.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Navas, V.G.; Sandá, A.; Sanz, C.; Fernández, D.; Vleugels, J.; Vanmeensel, K. Surface integrity of rotary ultrasonic machined ZrO2—TiN and Al2O3—TiC—SiC ceramics. J. Eur. Ceram. Soc. 2015, 35, 3927–3941. [Google Scholar] [CrossRef]
- Ruggeri, S.; Fontana, G.; Fassi, I. Micro-Manufacturing Technologies and Their Applications. C Hapter-Micro-Assembly; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Finch, D.S.; Oreskovic, T.; Ramadurai, K.; Herrmann, C.F.; George, S.M.; Mahajan, R.L. Biocompatibility of atomic layer-deposited alumina thin films. J. Biomed. Mater. Res. Part A 2008, 87, 100–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pawar, P.; Ballav, R.; Kumar, A. An Overview of Machining Process of Alumina and Alumina Ceramic Composites. Manuf. Sci. Technol. 2015, 3, 10–15. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, M.; Umer, U.; Rehman, A.; Al-Ahmari, A.; El-Tamimi, A. Microchannels Fabrication in Alumina Ceramic Using Direct Nd:YAG Laser Writing. Micromachines 2018, 9, 371. [Google Scholar] [CrossRef] [Green Version]
- Umer, U.; Khan, M.; Al-ahmari, A. Multi-response optimization of machining parameters in micro milling of alumina ceramics using Nd: YAG laser. Measurement 2017, 95, 181–192. [Google Scholar] [CrossRef]
- Leone, C.; Genna, S.; Tagliaferri, F.; Palumbo, B.; Dix, M. Experimental investigation on laser milling of aluminium oxide using a 30 W Q-switched Yb: YAG fi ber laser. Opt. Laser Technol. 2016, 76, 127–137. [Google Scholar] [CrossRef]
- Abdo, B.M.A.; Anwar, S.; El-Tamimi, A.M.; Alahmari, A.M.; Abouel Nasr, E. Laser micro-milling of bio-lox forte ceramic: An experimental analysis. Precis. Eng. 2018, 53, 179–193. [Google Scholar] [CrossRef]
- Abdo, B.M.A.; El-Tamimi, A.M.; Anwar, S.; Umer, U.; Alahmari, A.M.; Ghaleb, M.A. Experimental investigation and multi-objective optimization of Nd: YAG laser micro-channeling process of zirconia dental ceramic. Int. J. Adv. Manuf. Technol. 2018, 98, 1–18. [Google Scholar] [CrossRef]
- Abdo, B.M.A.; Ahmed, N.; El-tamimi, A.M.; Anwar, S.; Alkhalefah, H.; Nasr, E.A. Laser beam machining of zirconia ceramic: An investigation of micro-machining geometry and surface roughness. J. Mech. Sci. Technol. 2019, 33, 1817–1831. [Google Scholar] [CrossRef]
- Singh, R.P.; Singhal, S.; Singh, R.P.; Singhal, S. Rotary Ultrasonic Machining: A Review. Mater. Manuf. Process. 2017, 31, 1795–1824. [Google Scholar] [CrossRef]
- Kataria, R.; Kumar, J. Ultrasonic Machining: A Review. Adv. Mater. Res. 2016, 1137, 61–78. [Google Scholar] [CrossRef]
- Geng, D.; Teng, Y.; Liu, Y.; Shao, Z.; Jiang, X.; Zhang, D. Experimental study on drilling load and hole quality during rotary ultrasonic helical machining of small-diameter CFRP holes. J. Mater. Process. Technol. 2019, 270, 195–205. [Google Scholar] [CrossRef]
- Jain, A.K.; Pandey, P.M. Experimental studies on tool wear in μ-RUM process. Int. J. Adv. Manuf. Technol. 2016, 85, 2125–2138. [Google Scholar] [CrossRef]
- Kumar, A.; Pandey, P.M. Experimental investigations of ceramic machining using µ-grinding and µ-rotary ultrasonic machining processes: A comparative study. Mater. Manuf. Process. 2017, 32, 598–607. [Google Scholar]
- Lakhdari, F.; Bouzid, D.; Belkhir, N.; Herold, V. Surface and subsurface damage in Zerodur® glass ceramic during ultrasonic assisted grinding. Int. J. Adv. Manuf. Technol. 2017, 90, 1993–2000. [Google Scholar] [CrossRef]
- Abdo, B.M.A.; Anwar, S.; El-tamimi, A.M.; Nasr, E.A. Experimental Analysis on the Influence and Optimization of µ-RUM Parameters in Machining Alumina Bioceramic. Materials 2019, 12, 616. [Google Scholar] [CrossRef] [Green Version]
- Abdo, B.M.A.; Anwar, S.; El-tamimi, A. Machinability study of biolox forte ceramic by milling microchannels using rotary ultrasonic machining. J. Manuf. Process. 2019, 43, 175–191. [Google Scholar] [CrossRef]
- Singh, R.P.; Singhal, S. Investigation of Machining Characteristics in Rotary Ultrasonic Machining of Alumina Ceramic. Mater. Manuf. Process. 2016, 32, 309–326. [Google Scholar] [CrossRef]
- Jiao, Y.; Liu, W.J.; Pei, Z.J.; Xin, X.J.; Treadwell, C. Study on Edge Chipping in Rotary Ultrasonic Machining of Ceramics: An Integration of Designed Experiments and Finite Element Method Analysis. J. Manuf. Sci. Eng. 2005, 127, 752. [Google Scholar] [CrossRef]
- Gong, H.; Fang, F.Z.; Hu, X.T. Kinematic view of tool life in rotary ultrasonic side milling of hard and brittle materials. Int. J. Mach. Tools Manuf. 2010, 50, 303–307. [Google Scholar] [CrossRef]
- Shen, J.Y.; Wang, J.Q.; Jiang, B.; Xu, X.P. Study on wear of diamond wheel in ultrasonic vibration-assisted grinding ceramic. Wear 2015, 332–333, 788–793. [Google Scholar] [CrossRef]
- Wei, S.; Zhao, H.; Jing, J. Investigation on three-dimensional surface roughness evaluation of engineering ceramic for rotary ultrasonic grinding machining. Appl. Surf. Sci. 2015, 357, 139–146. [Google Scholar] [CrossRef]
- Liu, D.; Cong, W.L.; Pei, Z.J.; Tang, Y. A cutting force model for rotary ultrasonic machining of brittle materials. Int. J. Mach. Tools Manuf. 2012, 52, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Doloi, B.; Bhattacharyya, B. Fabrication of stepped hole on zirconia bioceramics by ultrasonic machining. Mach. Sci. Technol. 2016, 20, 681–700. [Google Scholar] [CrossRef]
- Abdo, B.M.A.; El-Tamimi, A.; Alkhalefah, H. Parametric Analysis and Optimization of Rotary Ultrasonic Machining of Zirconia (ZrO2) Ceramics. IOP Conf. Ser. Mater. Sci. Eng. 2020, 727, 012009. [Google Scholar] [CrossRef]
- Xiao, X.; Zheng, K.; Liao, W. Theoretical model for cutting force in rotary ultrasonic milling of dental zirconia ceramics. Int. J. Adv. Manuf. Technol. 2014, 75, 1263–1277. [Google Scholar] [CrossRef]
- Churi, N.J.; Pei, Z.J.; Shorter, D.C.; Treadwell, C. Rotary ultrasonic machining of silicon carbide: Designed experiments. Int. J. Manuf. Technol. Manag. 2007, 12, 284–298. [Google Scholar] [CrossRef]
- Baraheni, M.; Amini, S. Investigation on rotary ultrasonic assisted end grinding of silicon nitride ceramics. SN Appl. Sci. 2019, 1, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Sokolov, A.S.; Harris, V.G. 3D crystallographic alignment of alumina ceramics by application of low magnetic fields. J. Eur. Ceram. Soc. 2018, 38, 5257–5263. [Google Scholar] [CrossRef] [Green Version]
- Maccauro, G.; Iommetti, P.R.; Manicone, P.F.; Raffaelli, L. Zirconia and Alumina Bioceramic Biocompatibility; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2012. [Google Scholar]
- Gologlu, C.; Sakarya, N. The effects of cutter path strategies on surface roughness of pocket milling of 1.2738 steel based on Taguchi method. J. Mater. Process. Technol. 2007, 6, 7–15. [Google Scholar] [CrossRef]
- Heo, E.; Kim, D.; Lee, J.; Lee, C.; Chen, F.F. High speed pocket milling planning by feature-based machining area partitioning $. Robot. Comput. Integr. Manuf. 2011, 27, 706–713. [Google Scholar] [CrossRef]
- Kuriakose, S.; Patowari, P.K.; Bhatt, J. Machinability study of Zr-Cu-Ti metallic glass by micro hole drilling using micro-USM. J. Mater. Process. Technol. 2017, 240, 42–51. [Google Scholar] [CrossRef]
- Cheema, M.S.; Singh, P.K.; Tyagi, O.; Dvivedi, A.; Sharma, A.K. Tool wear and form accuracy in ultrasonically machined microchannels. Meas. J. Int. Meas. Confed. 2016, 81, 85–94. [Google Scholar] [CrossRef]
Characteristics | Value/Type |
---|---|
No. of axis | 5 |
Linear Traverse path (X, Y, Z) | 200, 200, 280 mm |
Rotational axis (A and C) | −10–30 and 360° |
Feed range up to | 40 m/min |
Frequency | 18–48 kHz |
Amplitude | 5–80 µm |
Rotational speeds ultrasonic up to | 10,000 rpm |
Ultrasonic generator | USG2000 |
Coolant type (pressure) | Grindex −10 (0.4–40 bar) |
Positioning accuracy | ±2 µm |
Measurement accuracy | 0.25 µm |
Tool holder | HSK 32 E/S |
DMG Control Panel | Siemens 840 D |
Tool | Diamond/Nickel base |
Workpiece measurement | Renishaw OMP 400 |
Tool measurement | BLUM Laser P87 |
Property | Value/Type |
---|---|
Outer diameter | 2 mm |
Inner diameter | 1 mm |
Holder type | ER11 taper |
Bonded material | Diamond |
Base material | Nickel |
Abrasive grain size | D46 (mesh size of 325/400) |
Active milling length | 6 mm |
Binding Type | GVD, (Galvanic coated) |
Property | Value (Unit) |
---|---|
Purity | 99.9 |
Grain size | <0.1 (µm) |
Bulk density | 3.96 (g/cm3) |
Poisson’s ratio | 0.23 |
Vickers hardness (HV 0.5) | 2000 |
Tensile strength | 650 (MPa) |
Compressive strength | 4000 (MPa) |
Fracture toughness | 4(MPa·m1/2) |
Melting point | 2040 (°C) |
Parameters | Value (Unit)/Type |
---|---|
Spindle speed | 8000 (rpm) |
Feed rate | 2 (mm/min) |
Depth of cut | 0.15 (mm) |
Frequency | 25 (kHz) |
Amplitude | 5 (µm) |
Coolant pressure | 4 (bar) |
Coolant type | Grindex-10 |
Tool Path Strategy | Average Ra (µm) | Average Rt (µm) | MRR (mm3/min) |
---|---|---|---|
Uni-X | 0.185 | 2.107 | 0.36 |
Uni-Y | 0.207 | 2.208 | 0.36 |
Zigzag-X | 0.221 | 1.949 | 0.46 |
Zigzag-Y | 0.235 | 2.482 | 0.46 |
Cross | 0.162 | 1.643 | 0.42 |
Spiral | 0.195 | 1.927 | 0.49 |
Mix-1 | 0.231 | 4.314 | 0.49 |
Mix-2 | 0.155 | 1.432 | 0.44 |
Mix-3 | 0.187 | 2.542 | 0.46 |
Machine | 0.189 | 1.596 | 0.45 |
Tool Path Strategy | Design Depth (mm) | Actual Depth (mm) | Depth Tolerance (mm) | Design Width (mm) | Actual Width (mm) | Width Tolerance (mm) | Depth Error (%) | Width Error (%) |
---|---|---|---|---|---|---|---|---|
Uni-X | 0.3 | 0.3138 | 0.0138 | 6 | 6.3 | 0.3 | 4.6 | 5.0 |
Uni-Y | 0.3141 | 0.0141 | 6.27 | 0.27 | 4.7 | 4.5 | ||
Zigzag-X | 0.3105 | 0.0105 | 6.234 | 0.234 | 3.5 | 3.9 | ||
Zigzag-Y | 0.3102 | 0.0102 | 6.282 | 0.282 | 3.4 | 4.7 | ||
Cross | 0.3087 | 0.0087 | 6.246 | 0.246 | 2.9 | 4.1 | ||
Spiral | 0.3114 | 0.0114 | 6.222 | 0.222 | 3.8 | 3.7 | ||
Mix-1 | 0.315 | 0.015 | 6.258 | 0.258 | 5.0 | 4.3 | ||
Mix-2 | 0.3117 | 0.0117 | 6.234 | 0.234 | 3.9 | 3.9 | ||
Mix-3 | 0.3126 | 0.0126 | 6.288 | 0.288 | 4.2 | 4.8 | ||
Machine | 0.3111 | 0.0111 | 6.27 | 0.27 | 3.7 | 4.5 | ||
Average | 0.3119 | 0.0119 | 6.2604 | 0.2604 | 3.97 | 4.34 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdo, B.M.A.; El-Tamimi, A.; Nasr, E.A. Rotary Ultrasonic Machining of Alumina Ceramic: An Experimental Investigation of Tool Path and Tool Overlapping. Appl. Sci. 2020, 10, 1667. https://doi.org/10.3390/app10051667
Abdo BMA, El-Tamimi A, Nasr EA. Rotary Ultrasonic Machining of Alumina Ceramic: An Experimental Investigation of Tool Path and Tool Overlapping. Applied Sciences. 2020; 10(5):1667. https://doi.org/10.3390/app10051667
Chicago/Turabian StyleAbdo, Basem M. A., Abdualziz El-Tamimi, and Emad Abouel Nasr. 2020. "Rotary Ultrasonic Machining of Alumina Ceramic: An Experimental Investigation of Tool Path and Tool Overlapping" Applied Sciences 10, no. 5: 1667. https://doi.org/10.3390/app10051667
APA StyleAbdo, B. M. A., El-Tamimi, A., & Nasr, E. A. (2020). Rotary Ultrasonic Machining of Alumina Ceramic: An Experimental Investigation of Tool Path and Tool Overlapping. Applied Sciences, 10(5), 1667. https://doi.org/10.3390/app10051667