Special Issue on Fatigue and Fracture of Non-Metallic Materials and Structures
Abstract
:1. Introduction
2. Fracture
3. Fatigue
Funding
Acknowledgments
Conflicts of Interest
References
- Huang, C.; Wu, C.; Lin, S.; Yen, T. Effect of Slag Particle Size on Fracture Toughness of Concrete. Appl. Sci. 2019, 9, 805. [Google Scholar] [CrossRef] [Green Version]
- Saleem, M.; Qureshi, H.; Amin, M.; Khan, K.; Khurshid, H. Cracking Behavior of RC Beams Strengthened with Different Amounts and Layouts of CFRP. Appl. Sci. 2019, 9, 1017. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Liu, C.; Tan, Y.; Yang, N.; Qiao, Y.; Hu, Y.; Li, Q.; Koval, G.; Chazallon, C. Determination of Fracture Properties of Concrete Using Size and Boundary Effect Models. Appl. Sci. 2019, 9, 1337. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Huang, C.; Kan, Y.; Yen, T. Effects of Fineness and Dosage of Fly Ash on the Fracture Properties and Strength of Concrete. Appl. Sci. 2019, 9, 2266. [Google Scholar] [CrossRef] [Green Version]
- Xiong, X.; Xiao, Q. Meso-Scale Simulation of Concrete Based on Fracture and Interaction Behavior. Appl. Sci. 2019, 9, 2986. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Leung, A.; Xu, N.; Zhang, K.; Gao, K. Three-Dimensional Physical and Numerical Modelling of Fracturing and Deformation Behaviour of Mining-Induced Rock Slopes. Appl. Sci. 2019, 9, 1360. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Cai, W.; Li, X.; Zhu, W.; Zhang, Q.; Wang, S. Experimental and DEM Analysis on Secondary Crack Types of Rock-Like Material Containing Multiple Flaws Under Uniaxial Compression. Appl. Sci. 2019, 9, 1749. [Google Scholar] [CrossRef] [Green Version]
- Shu, J.; Jiang, L.; Kong, P.; Wang, Q. Numerical Analysis of the Mechanical Behaviors of Various Jointed Rocks under Uniaxial Tension Loading. Appl. Sci. 2019, 9, 1824. [Google Scholar] [CrossRef] [Green Version]
- Shu, J.; Jiang, L.; Kong, P.; Wang, P.; Zhang, P. Numerical Modeling Approach on Mining-Induced Strata Structural Behavior by Considering the Fracture-Weakening Effect on Rock Mass. Appl. Sci. 2019, 9, 1832. [Google Scholar] [CrossRef] [Green Version]
- Masłowski, M.; Kasza, P.; Czupski, M.; Wilk, K.; Moska, R. Studies of Fracture Damage Caused by the Proppant Embedment Phenomenon in Shale Rock. Appl. Sci. 2019, 9, 2190. [Google Scholar] [CrossRef] [Green Version]
- Jin, L.; Sui, W.; Xiong, J. Experimental Investigation on Chemical Grouting in a Permeated Fracture Replica with Different Roughness. Appl. Sci. 2019, 9, 2762. [Google Scholar] [CrossRef] [Green Version]
- Han, Z.; Zhang, L.; Zhou, J. Numerical Investigation of Mineral Grain Shape Effects on Strength and Fracture Behaviors of Rock Material. Appl. Sci. 2019, 9, 2855. [Google Scholar] [CrossRef] [Green Version]
- Cho, J. A Numerical Evaluation of SIFs of 2-D Functionally Graded Materials by Enriched Natural Element Method. Appl. Sci. 2019, 9, 3581. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Shao, Y.; Yao, K. Understanding the Fracture Behaviors of Metallic Glasses—An Overview. Appl. Sci. 2019, 9, 4277. [Google Scholar] [CrossRef] [Green Version]
- Bennati, S.; Fisicaro, P.; Taglialegne, L.; Valvo, P. An Elastic Interface Model for the Delamination of Bending-Extension Coupled Laminates. Appl. Sci. 2019, 9, 3560. [Google Scholar] [CrossRef] [Green Version]
- Stückelschweiger, M.; Gruber, D.; Jin, S.; Harmuth, H. Wedge-Splitting Test on Carbon-Containing Refractories at High Temperatures. Appl. Sci. 2019, 9, 3249. [Google Scholar] [CrossRef] [Green Version]
- Spagnoli, A.; Terzano, M.; Brighenti, R.; Artoni, F.; Carpinteri, A. How Soft Polymers Cope with Cracks and Notches. Appl. Sci. 2019, 9, 1086. [Google Scholar] [CrossRef] [Green Version]
- Soleimani, S.; Sayyar Roudsari, S. Analytical Study of Reinforced Concrete Beams Tested under Quasi-Static and Impact Loadings. Appl. Sci. 2019, 9, 2838. [Google Scholar] [CrossRef] [Green Version]
- Kang, C.; Kim, T. Curable Area Substantiation of Self-Healing in Concrete Using Neutral Axis. Appl. Sci. 2019, 9, 1537. [Google Scholar] [CrossRef] [Green Version]
- Jia, S.; Wang, F.; Huang, W.; Xu, B. Research on the Blow-Off Impulse Effect of a Composite Reinforced Panel Subjected to Lightning Strike. Appl. Sci. 2019, 9, 1168. [Google Scholar] [CrossRef] [Green Version]
- Sellitto, A.; Saputo, S.; Di Caprio, F.; Riccio, A.; Russo, A.; Acanfora, V. Numerical–Experimental Correlation of Impact-Induced Damages in CFRP Laminates. Appl. Sci. 2019, 9, 2372. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Li, X.; Guo, H. Failure Probability Prediction of Thermally Stable Diamond Composite Tipped Picks in the Cutting Cycle of Underground Roadway Development. Appl. Sci. 2019, 9, 3294. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Sun, Z.; Zhu, Q.; Peng, K. Triaxial Loading and Unloading Tests on Dry and Saturated Sandstone Specimens. Appl. Sci. 2019, 9, 1689. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Hwang, E.; Jeon, E. Optimization of Shape Design of Grommet through Analysis of Physical Properties of EPDM Materials. Appl. Sci. 2019, 9, 133. [Google Scholar] [CrossRef] [Green Version]
- Fathalla, E.; Tanaka, Y.; Maekawa, K. Fatigue Life of RC Bridge Decks Affected by Non-Uniformly Dispersed Stagnant Water. Appl. Sci. 2019, 9, 607. [Google Scholar] [CrossRef] [Green Version]
- Fathalla, E.; Tanaka, Y.; Maekawa, K. Effect of Crack Orientation on Fatigue Life of Reinforced Concrete Bridge Decks. Appl. Sci. 2019, 9, 1644. [Google Scholar] [CrossRef] [Green Version]
- Lantsoght, E.; Koekkoek, R.; van der Veen, C.; Sliedrecht, H. Fatigue Assessment of Prestressed Concrete Slab-Between-Girder Bridges. Appl. Sci. 2019, 9, 2312. [Google Scholar] [CrossRef] [Green Version]
- Shan, Z.; Yu, Z.; Li, X.; Lv, X.; Liao, Z. A Damage Model for Concrete under Fatigue Loading. Appl. Sci. 2019, 9, 2768. [Google Scholar] [CrossRef] [Green Version]
- Mínguez, J.; Gutiérrez, L.; González, D.; Vicente, M. Plain and Fiber-Reinforced Concrete Subjected to Cyclic Compressive Loading: Study of the Mechanical Response and Correlations with Microstructure Using CT Scanning. Appl. Sci. 2019, 9, 3030. [Google Scholar] [CrossRef] [Green Version]
- Soleimani, S.; Boyd, A.; Komar, A.; Roudsari, S. Fatigue in Concrete under Low-Cycle Tensile Loading Using a Pressure-Tension Apparatus. Appl. Sci. 2019, 9, 3217. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Huang, M.; Zhong, H.; Li, B. Comprehensive Evaluation of Fatigue Performance of Modified Asphalt Mixtures in Different Fatigue Tests. Appl. Sci. 2019, 9, 1850. [Google Scholar] [CrossRef] [Green Version]
- Fu, H.; Wang, S.; Pei, X.; Chen, W. Indices to Determine the Reliability of Rocks under Fatigue Load Based on Strain Energy Method. Appl. Sci. 2019, 9, 360. [Google Scholar] [CrossRef] [Green Version]
- Loza, B.; Pacheco-Chérrez, J.; Cárdenas, D.; Minchala, L.; Probst, O. Comparative Fatigue Life Assessment of Wind Turbine Blades Operating with Different Regulation Schemes. Appl. Sci. 2019, 9, 4632. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spagnoli, A. Special Issue on Fatigue and Fracture of Non-Metallic Materials and Structures. Appl. Sci. 2020, 10, 1841. https://doi.org/10.3390/app10051841
Spagnoli A. Special Issue on Fatigue and Fracture of Non-Metallic Materials and Structures. Applied Sciences. 2020; 10(5):1841. https://doi.org/10.3390/app10051841
Chicago/Turabian StyleSpagnoli, Andrea. 2020. "Special Issue on Fatigue and Fracture of Non-Metallic Materials and Structures" Applied Sciences 10, no. 5: 1841. https://doi.org/10.3390/app10051841
APA StyleSpagnoli, A. (2020). Special Issue on Fatigue and Fracture of Non-Metallic Materials and Structures. Applied Sciences, 10(5), 1841. https://doi.org/10.3390/app10051841