Ultrawideband Low-Profile and Miniaturized Spoof Plasmonic Vivaldi Antenna for Base Station
Abstract
:1. Introduction
2. Methods and Principles
3. Design of Plasmonic Antipodal Vivaldi Antenna
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, C.; Luo, Q.; Mao, G.; Sheng, M.; Li, J. Vehicle-mounted base station for connected and autonomous vehicles: Opportunities and challenges. IEEE Wirel. Commun. 2019, 3, 31–37. [Google Scholar] [CrossRef]
- Imran, M.A.; Sambo, Y.A.; Abbasi, Q.H. 5G communication systems and connected healthcare. In Enabling 5G Communication Systems to Support Vertical Industries; John Wiley & Sons: Hoboken, NJ, USA, 2019; pp. 149–177. [Google Scholar]
- Yan, J.; Wu, D.; Wang, H.; Wang, R. Multipoint. Cooperative transmission for virtual reality in 5G new radio. IEEE Multimed. 2019, 26, 51–58. [Google Scholar] [CrossRef]
- Wu, Q.; Liang, P.; Chen, X. A broadband ±45° dual-polarized multiple-input multiple-output antenna for 5G base stations with extra decoupling elements. J. Commun. Inf. Netw. 2018, 3, 31–37. [Google Scholar] [CrossRef]
- Zheng, D.; Chu, Q. A wideband dual-polarized antenna with two independently controllable resonant modes and its array for base-station applications. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2014–2017. [Google Scholar] [CrossRef]
- Wu, B.Q.; Luk, K.M. A broadband dual-polarized magneto-electric dipole antenna with simple feeds. IEEE Antennas Wirel. Propag. Lett. 2009, 8, 60–63. [Google Scholar]
- Gou, Y.; Yang, S.; Li, J.; Nie, Z. A compact dual-polarized printed dipole antenna with high isolation for wideband base station applications. IEEE Trans. Antennas Propag. 2014, 62, 4392–4395. [Google Scholar] [CrossRef]
- Huang, H.; Liu, Y.; Gong, S. A broadband dual-polarized base station antenna with sturdy construction. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 665–668. [Google Scholar] [CrossRef]
- Chu, Q.X.; Wen, D.L.; Luo, Y. A broadband ±45° dual-polarized antenna with Y-shaped feeding lines. IEEE Trans. Antennas Propag. 2015, 63, 483–490. [Google Scholar] [CrossRef]
- Zheng, D.Z.; Chu, Q.X. A multimode wideband ±45° dual-polarized antenna with embedded loops. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 633–636. [Google Scholar] [CrossRef]
- Gao, S.; Li, L.W.; Leong, M.S.; Yeo, T.S. A broad-band dual-polarized microstrip patch antenna with aperture coupling. IEEE Trans. Antennas Propag. 2003, 51, 898–900. [Google Scholar] [CrossRef]
- Sim, C.; Chang, C.; Row, J. Dual-feed dual-polarized patch antenna with low cross polarization and high isolation. IEEE Trans. Antennas Propag. 2009, 57, 3321–3324. [Google Scholar] [CrossRef]
- Khan, M.; Chatterjee, D. Characteristic mode analysis of a class of empirical design techniques for probe-fed, U-slot microstrip patch antennas. IEEE Trans. Antennas. Propag. 2016, 64, 2758–2770. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, D.; Liu, K.; Fan, Y. Ultra-wideband dual-polarized antenna with three resonant modes for 2G/3G/4G/5G communication systems. IEEE Access 2019, 7, 43214–43221. [Google Scholar] [CrossRef]
- Yu, Z.; Yu, J.; Ran, X.; Zhu, C. A novel Koch and Sierpinski combined fractal antenna for 2G/3G/4G/5G/WLAN/navigation applications. Microw. Opt. Technol. Lett. 2017, 59, 2147–2155. [Google Scholar] [CrossRef]
- Wen, L.H.; Gao, S.; Mao, C.X.; Luo, Q.; Hu, W.; Yin, Y.; Yang, X. A wideband dual-polarized antenna using shorted dipoles. IEEE Access 2018, 6, 39725–39733. [Google Scholar] [CrossRef]
- Van Rooyen, M.; Odendaal, J.W.; Joubert, J. High-gain directional antenna for WLAN and WiMAX applications. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 286–289. [Google Scholar] [CrossRef] [Green Version]
- Gibson, P.J. The vivaldi aerial. In Proceedings of the 9th European Microwave Conference, Brighton, UK, 17–20 September 1979; pp. 101–105. [Google Scholar]
- Simons, R.N.; Dib, N.I.; Lee, R.Q.; Katehi, L.P.B. Integrated uniplanar transition for linearly tapered slot antenna. IEEE Trans. Antennas Propag. 1995, 43, 998–1002. [Google Scholar] [CrossRef]
- Chen, Y.J.; Hong, W.; Wu, K. Design of a monopulse antenna using a dual V-type linearly tapered slot antenn. IEEE Trans. Antennas Propag. 2008, 56, 2903–2909. [Google Scholar] [CrossRef]
- Ozbay, Z. Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science 2006, 311, 189–193. [Google Scholar] [CrossRef]
- Hibbins, A.P. Experimental verification of designer surface plasmons. Science 2005, 308, 670–672. [Google Scholar] [CrossRef] [Green Version]
- Pendry, J.B.; Martin-Moreno, L.; Garcia-Vidal, F.J. Mimicking surface plasmons with structured surfaces. Science 2004, 305, 847–848. [Google Scholar] [CrossRef]
- Fong, B.H.; Colburn, J.S.; Ottusch, J.J.; Visher, J.L.; Sievenpiper, D.F. Scalar and tensor holographic artificial impedance surfaces. IEEE Trans. Antennas Propag. 2010, 58, 3212–3221. [Google Scholar] [CrossRef]
- Wang, X.; Li, Z.; Fei, X.; Wang, J. A holographic antenna based on spoof surface plasmon polaritons. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1528–1532. [Google Scholar] [CrossRef]
- Dadgarpour, A.; Zarghoon, B.; Virdee, B.S.; Denidni, T.A. Improvement of gain and elevation tilt angle using metamaterial loading for millimeter-wave applications. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 418–420. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Li, K.; Wang, J.; Li, L.; Liang, C.H. An etched planar meta-surface half Maxwell fish-eye lens antenna. IEEE Trans. Antennas Propag. 2015, 63, 3742–3747. [Google Scholar] [CrossRef]
- Hongnara, T.; Chaimool, S.; Akkaraekthalin, P.; Zhao, Y. Design of compact beam-steering antennas using a meta-surface formed by uniform square rings. IEEE Access 2018, 6, 9420–9429. [Google Scholar] [CrossRef]
- Singh, A.K.; Abegaonkar, M.P.; Koul, S.K. High-gain and high-aperture-efficiency cavity resonator antenna using metamaterial superstrate. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2388–2391. [Google Scholar] [CrossRef]
- Qin, F.; Zhang, Q.; Xiao, J. Sub-wavelength unidirectional antenna realized by stacked spoof localized surface plasmon resonators. Sci. Rep. 2016, 6, 29773. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.; Wang, L.; Qiao, W. Design of 2 to 18 GHz balanced antipodal Vivaldi antennas using substrate-integrated lenses. Electromagnetics 2018, 38, 478–487. [Google Scholar] [CrossRef]
- Zhu, H.; Li, X.; Yao, L.; Xiao, J. A novel dielectric loaded Vivaldi antenna with improved radiation characteristics for UWB application. Appl. Comput. Electromagn. Soc. J. 2018, 33, 394–398. [Google Scholar]
- Peng, F.; Yong, C.J.; Wei, H. A miniaturized antipodal Vivaldi antenna with improved radiation characteristics. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 127–130. [Google Scholar] [CrossRef]
- Marek, D.; Harihara, S.G.; Prabhu, S.S. Design and validation of an antipodal Vivaldi antenna with additional slots. Int. J. Antennas Propag. 2019, 2019, 7472186. [Google Scholar]
- Eichenberger, J.; Yetisir, E.; Ghalichechian, N. High-Gain antipodal Vivaldi Antenna with pseudoelement and notched tapered slot operating at (2.5 to 57) GHz. IEEE Trans. Antennas Propag. 2019, 67, 4357–4366. [Google Scholar] [CrossRef]
- Fayu, W.; Jun, C.; Binhong, L. A novel ultra-wideband antipodal Vivaldi antenna with trapezoidal dielectric substrate. Microw. Opt. Technol. Lett. 2018, 60, 449–455. [Google Scholar]
- Yang, Z.; Jingjian, H.; Weiwei, W. An antipodal Vivaldi antenna with band-notched characteristics for ultra-wideband applications. AEU Int. J. Electron. Commun. 2017, 76, 152–157. [Google Scholar] [CrossRef]
Frequency | Typical AVA | Plasmonic AVA |
---|---|---|
1.8 GHz | 113.5 | 52.3 |
2.0 GHz | 66.6 | 54.7 |
3.0 GHz | 61 | 52.9 |
4.0 GHz | 52.2 | 52.6 |
5.0 GHz | 48.1 | 47.1 |
6.0 GHz | 41 | 66.9 |
Reference (Year) | Physical Size (mm2) | fmin (GHz) | Gain (dBi) | Electrical Size |
---|---|---|---|---|
[31] (2018) | 71 × 50 | 2.0 | 4–7.5 | 0.47λ0 × 0.3λ0 |
[32] (2018) | 50 × 40 | 2.8 | 5.5–9 | 0.46λ0 × 0.37λ0 |
[33] (2011) | 60 × 48 | 2.4 | 3.8–10 | 0.48λ0 × 0.38λ0 |
[34] (2019) | 90 × 80 | 3.76 | 5–7 | 1.13λ0 × 1.0λ0 |
[35] (2019) | 186 × 77 | 2.5 | 4–16 | 1.55λ0 × 0.64λ0 |
[36] (2018) | 60.7 × 57.5 | 3.3 | 3.8–12.6 | 0.67λ0 × 0.63λ0 |
[37] (2017) | 104 × 100 | 2.0 | 2.2–8 | 0.69λ0 × 0.67λ0 |
Structure A | 94 × 70 | 2.4 | 3–9 | 0.75λ0 × 0.56λ0 |
Structure B | 94 × 70 | 2.1 | 4.5–8 | 0.66λ0 × 0.49λ0 |
Structure C | 94 × 70 | 1.8 | 5.5–9 | 0.56λ0 × 0.42λ0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, L.H.; Tan, C.; Zhou, Y.J. Ultrawideband Low-Profile and Miniaturized Spoof Plasmonic Vivaldi Antenna for Base Station. Appl. Sci. 2020, 10, 2429. https://doi.org/10.3390/app10072429
Dai LH, Tan C, Zhou YJ. Ultrawideband Low-Profile and Miniaturized Spoof Plasmonic Vivaldi Antenna for Base Station. Applied Sciences. 2020; 10(7):2429. https://doi.org/10.3390/app10072429
Chicago/Turabian StyleDai, Li Hui, Chong Tan, and Yong Jin Zhou. 2020. "Ultrawideband Low-Profile and Miniaturized Spoof Plasmonic Vivaldi Antenna for Base Station" Applied Sciences 10, no. 7: 2429. https://doi.org/10.3390/app10072429
APA StyleDai, L. H., Tan, C., & Zhou, Y. J. (2020). Ultrawideband Low-Profile and Miniaturized Spoof Plasmonic Vivaldi Antenna for Base Station. Applied Sciences, 10(7), 2429. https://doi.org/10.3390/app10072429