Green Synthesis Method and Application of NaP Zeolite Prepared by Coal Gasification Coarse Slag from Ningdong, China
Abstract
:1. Introduction
2. Experimental
2.1. CGCS and Reagent
2.2. Synthesis of NaP Zeolite
2.3. Sample Characterization
2.4. Ammonia Nitrogen Removal Experiment
2.4.1. Influence of Adsorbent Dosage
2.4.2. Influence of pH
2.4.3. Influence of Adsorption Time
3. Results and Discussion
3.1. XRF Result Analyses
3.2. XRD Result Analysis
3.2.1. Influence of SiO2/Na2O Molar Ratio
3.2.2. Influence of SiO2/Al2O3 Molar Ratio
3.2.3. Influence of H2O/Al2O3 Molar Ratio
3.2.4. Influence of Aging Time
3.2.5. Influence of Crystallization Temperature
3.2.6. Influence of Crystallization Time
3.3. SEM Results Analysis
3.4. FT-IR Result Analysis
3.5. TG-DSC Results Analysis
3.6. BET Result Analysis
3.7. The NaP Zeolite to Remove Ammonia Nitrogen
3.7.1. Influence of Adsorbent Dosage
3.7.2. Influence of pH
3.7.3. Influence of Reaction Time
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Andrews, R.; Rubel, A.; Groppo, J.; Marrs, B. Advanced Gasification by-Product Utilization; Final Technical Report; University of Kentucky Center for Applied Energy Research: Lexington, KY, USA, 2006. [Google Scholar]
- Zhao, X.; Zeng, C.; Mao, Y.; Li, W.; Peng, Y. The surface characteristics and reactivity of residual carbon in coal gasification slag. Energy Fuels 2009, 24, 91–94. [Google Scholar] [CrossRef]
- Tang, Y.; Guo, X.; Xie, Q.; Finkelman, R.B.; Han, S. Petrological characteristics and trace element partitioning of gasification residues from slagging entrained-flow gasifiers in Ningdong, China. Energy Fuels 2018, 32, 3052–3067. [Google Scholar] [CrossRef]
- Ge, J.C.; Yoon, S.K.; Choi, N.J. Application of fly ash as an adsorbent for removal of air and water pollutants. Appl. Sci. 2018, 8, 1116. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Huang, S.; Ji, L.; Wu, Y. Structure characteristics and gasification activity of residual carbon from entrained-flow coal gasification slag. Fuel 2014, 122, 67–75. [Google Scholar] [CrossRef]
- Jun, Y.; Yoon, S.; Oh, J.E. A comparison study for chloride-binding capacity between alkali-activated fly ash and slag in the use of seawater. Appl. Sci. 2017, 7, 971. [Google Scholar] [CrossRef] [Green Version]
- Yao, Z.T.; Ji, X.S.; Sarker, P.K.; Tang, J.H. A comprehensive review on the applications of coal fly ash. Earth Sci. Rev. 2015, 141, 105–121. [Google Scholar] [CrossRef] [Green Version]
- Asl, S.M.H.; Ghadi, A.; Baei, M.S.; Javadian, H. Porous catalysts fabricated from coal fly ash as cost-effective alternatives for industrial applications: A review. Fuel 2018, 217, 320–342. [Google Scholar]
- Liu, S.; Qi, C.; Jiang, Z.; Zhang, Y.; Niu, M.; Li, Y. Mineralogy and geochemistry of ash and slag from coal gasification in China: A review. Int. Geol. Rev. 2018, 60, 717–735. [Google Scholar] [CrossRef]
- Li, C.C.; Qiao, X.C.; Yu, J.G. Large surface area MCM-41 prepared from acid leaching residue of coal gasification slag. Mater. Lett. 2016, 167, 246–249. [Google Scholar] [CrossRef]
- Xu, Y.; Chai, X. Characterization of coal gasification slag-based activated carbon and its potential application in lead removal. Environ. Technol. 2018, 39, 382–391. [Google Scholar] [CrossRef]
- Gu, Y.Y.; Qiao, X.C. A carbon silica composite prepared from water slurry coal gasification slag. Microporous Mesoporous Mater. 2019, 276, 303–307. [Google Scholar] [CrossRef]
- Liu, S.; Chen, X.; Ai, W.; Wei, C. A new method to prepare mesoporous silica from coal gasification fine slag and its application in methylene blue adsorption. J. Cleaner Prod. 2019, 212, 1062–1071. [Google Scholar] [CrossRef]
- Ji, Q.; Tabassum, S.; Hena, S.; Silva, C.G. A review on the coal gasification wastewater treatment technologies: Past, present and future outlook. J. Cleaner Prod. 2016, 126, 38–55. [Google Scholar] [CrossRef]
- Tang, Y.; Wang, Y.; Huan, B.; Guo, X. Leachability of hazardous trace elements from entrained-flow coal gasification residues in Ningdong, China. Energy Fuels 2017, 31, 9703–9716. [Google Scholar] [CrossRef]
- Tang, Y.; Guo, X.; Pan, X.; Finkelman, R.; Wang, Y. Changes and Distribution of Modes of Occurrence of Seventeen Potentially-Hazardous Trace Elements during Entrained Flow Gasification of Coals from Ningdong, China. Minerals 2018, 8, 202. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Ecology and Environment of People’s Republic of China. Water Quality-Determination of Ammonia Nitrogen-Nessler’s Reagent Spectrophotometry; Chinese standard HJ 535-2009; Ministry of Ecology and Environment of People’s Republic of China: Pekin, China, 2010.
- Ali, I.O.; Hassan, A.M.; Shaaban, S.M.; Soliman, K.S. Synthesis and characterization of ZSM-5 zeolite from rice husk ash and their adsorption of Pb2+ onto unmodified and surfactant-modified zeolite. Sep. Purif. Technol. 2011, 83, 38–44. [Google Scholar]
- Kim, S.D.; Noh, S.H.; Park, J.W.; Kim, W.J. Organic-free synthesis of ZSM-5 with narrow crystal size distribution using two-step temperature process. Microporous Mesoporous Mater. 2006, 92, 181–188. [Google Scholar] [CrossRef]
- Kim, S.D.; Noh, S.H.; Seong, K.H.; Kim, W.J. Compositional and kinetic study on the rapid crystallization of ZSM-5 in the absence of organic template under stirring. Microporous Mesoporous Mater. 2004, 72, 185–192. [Google Scholar] [CrossRef]
- Ali, I.O.; El-Sheikh, S.M.; Salama, T.M.; Bakr, M.F. Controllable synthesis of NaP zeolite and its application in calcium adsorption. Sci. China Mater. 2015, 58, 621–633. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Yan, C.; Zhang, Z.; Wang, H.; Zhou, S.; Zhou, W. A comparative study on fly ash, geopolymer and faujasite block for Pb removal from aqueous solution. Fuel 2016, 185, 181–189. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, H.; Provis, J.L. Quantitative study of the reactivity of fly ash in geopolymerization by FTIR. J. Sustain. Cem. Based Mater. 2012, 1, 154–166. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, A.M.; Paprocki, A.; Ferret, L.S.; Azevedo, C.M. Synthesis of zeolite Na-P1 under mild conditions using Brazilian coal fly ash and its application in wastewater treatment. Fuel 2015, 139, 59–67. [Google Scholar] [CrossRef]
- Cardoso, A.M.; Horn, M.B.; Ferret, L.S.; Azevedo, C.M. Integrated synthesis of zeolites 4A and Na–P1 using coal fly ash for application in the formulation of detergents and swine wastewater treatment. J. Hazard. Mater. 2015, 287, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Hernández, R.; López-Delgado, A.; Padilla, I.; Galindo, R. One-step synthesis of NaP1, SOD and ANA from a hazardous aluminum solid waste. Microporous Mesoporous Mater. 2016, 226, 267–277. [Google Scholar] [CrossRef]
- Albert, B.R.; Cheetham, A.K.; Stuart, J.A.; Adams, C.J. Investigations on P zeolites: Synthesis, characterisation, and structure of highly crystalline low-silica NaP. Microporous Mesoporous Mater. 1998, 21, 133–142. [Google Scholar] [CrossRef]
- Liu, Y.; Yan, C.; Qiu, X.; Li, D.; Wang, H. Preparation of faujasite block from fly ash-based geopolymer via in-situ hydrothermal method. J. Taiwan Inst. Chem. Eng. 2016, 59, 433–439. [Google Scholar] [CrossRef]
- Rayalu, S.S.; Udhoji, J.S.; Meshram, S.U.; Naidu, R.R. Estimation of crystallinity in fly ash-based zeolite-A using XRD and IR spectroscopy. Curr. Sci. 2005, 89, 2147–2151. [Google Scholar]
- Yao, Y.; Sun, H. A novel silica alumina-based backfill material composed of coal refuse and fly ash. J. Hazard. Mater. 2012, 213, 71–82. [Google Scholar] [CrossRef]
- Stevens, R.W., Jr.; Siriwardane, R.V.; Logan, J. In situ Fourier transform infrared (FT-IR) investigation of CO2 adsorption onto zeolite materials. Energy Fuels 2008, 22, 3070–3079. [Google Scholar] [CrossRef]
- Sharma, P.; Song, J.S.; Han, M.H.; Cho, C.H. GIS-NaP1 zeolite microspheres as potential water adsorption material: Influence of initial silica concentration on adsorptive and physical/topological properties. Sci. Rep. 2016, 6, 22734. [Google Scholar] [CrossRef]
- Bohra, S.; Kundu, D.; Naskar, M.K. Synthesis of cashew nut-like zeolite NaP powders using agro-waste material as silica source. Mater. Lett. 2013, 106, 182–185. [Google Scholar] [CrossRef]
- Huo, Z.; Xu, X.; Lü, Z.; Song, J.; He, M. Synthesis of zeolite NaP with controllable morphologies. Microporous Mesoporous Mater. 2012, 158, 137–140. [Google Scholar] [CrossRef]
- Liu, Y.; Yan, C.; Zhao, J.; Zhang, Z.; Wang, H. Synthesis of zeolite P1 from fly ash under solvent-free conditions for ammonium removal from water. J. Cleaner Prod. 2018, 202, 11–22. [Google Scholar] [CrossRef]
- Koshy, N.; Jha, B.; Kadali, S.; Singh, D.N. Synthesis and characterization of Ca and Na zeolites (non-pozzolanic materials) obtained from fly Ash-Ca (OH)2 interaction. Mater. Perform. Charact. 2015, 4, 87–102. [Google Scholar]
- Sing, K.S. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Bandura, L.; Franus, M.; Józefaciuk, G.; Franus, W. Synthetic zeolites from fly ash as effective mineral sorbents for land-based petroleum spills cleanup. Fuel 2015, 147, 100–107. [Google Scholar] [CrossRef]
- Zhou, C.; Gao, Q.; Luo, W.; Zhou, Q.; Wang, H. Preparation, characterization and adsorption evaluation of spherical mesoporous Al-MCM-41 from coal fly ash. J. Taiwan Inst. Chem. Eng. 2015, 52, 147–157. [Google Scholar] [CrossRef]
- Aldahri, T.; Behin, J.; Kazemian, H.; Rohani, S. Synthesis of zeolite Na-P from coal fly ash by thermo-sonochemical treatment. Fuel 2016, 182, 494–501. [Google Scholar] [CrossRef]
- Majchrzak-Kucęba, I.; Nowak, W. A thermogravimetric study of the adsorption of CO2 on zeolites synthesized from fly ash. Thermochim. Acta 2005, 437, 67–74. [Google Scholar] [CrossRef]
- Nasir, N.; Daud, Z.; Abd Kadir, A.; Latiff, A.A.A.; Ahmad, B.; Suhani, N.; Halim, A.A. Removal of ammonia nitrogen from rubber industry wastewater using zeolite as adsorbent. Malays. J. Fundam. Appl. Sci. 2019, 15, 862–866. [Google Scholar]
- Huo, H.; Lin, H.; Dong, Y.; Cheng, H.; Wang, H.; Cao, L. Ammonia-nitrogen and phosphates sorption from simulated reclaimed waters by modified clinoptilolite. J. Hazard. Mater. 2012, 229, 292–297. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Gui, H.; Yang, W.; Li, D.; Tan, W.; Yang, M.; Barrow, C.J. Ammonia nitrogen removal from aqueous solution using functionalized zeolite columns. Desalin. Water Treat. 2014, 52, 753–758. [Google Scholar] [CrossRef]
- Kizito, S.; Wu, S.; Kirui, W.K.; Lei, M.; Lu, Q.; Bah, H.; Dong, R. Evaluation of slow pyrolyzed wood and rice husks biochar for adsorption of ammonium nitrogen from piggery manure anaerobic digestate slurry. Sci. Total Environ. 2015, 505, 102–112. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhang, H.; Xu, D.; Han, L.; Niu, D. Removal of ammonium from aqueous solutions using zeolite synthesized from fly ash by a fusion method. Desalination 2011, 271, 111–121. [Google Scholar] [CrossRef]
- Arslan, A.; Veli, S. Zeolite 13X for adsorption of ammonium ions from aqueous solutions and hen slaughterhouse wastewaters. J. Taiwan Inst. Chem. Eng. 2012, 43, 393–398. [Google Scholar] [CrossRef]
- Behin, J.; Bukhari, S.S.; Kazemian, H.; Rohani, S. Developing a zero liquid discharge process for zeolitization of coal fly ash to synthetic NaP zeolite. Fuel 2016, 171, 195–202. [Google Scholar] [CrossRef]
- He, Y.; Lin, H.; Dong, Y.; Liu, Q.; Wang, L. Simultaneous removal of ammonium and phosphate by alkaline-activated and lanthanum-impregnated zeolite. Chemosphere 2016, 164, 387–395. [Google Scholar] [CrossRef]
- Thornton, A.; Pearce, P.; Parsons, S.A. Ammonium removal from solution using ion exchange on to MesoLite, an equilibrium study. J. Hazard. Mater. 2007, 147, 883–889. [Google Scholar] [CrossRef]
- Saltalı, K.; Sarı, A.; Aydın, M. Removal of ammonium ion from aqueous solution by natural Turkish (Yıldızeli) zeolite for environmental quality. J. Hazard. Mater. 2007, 141, 258–263. [Google Scholar] [CrossRef]
Parameter | SiO2 | Al2O3 | Fe2O3 | CaO | K2O | MgO | Na2O | Other | LOI |
---|---|---|---|---|---|---|---|---|---|
CGCS | 53.44 | 17.21 | 11.23 | 10.12 | 2.27 | 1.92 | 1.33 | 2.48 | 12.55 |
Sample | Surface Area (m2/g) | External Surface Area (m2/g) | Total Pore Volume (cm3/g) | Average Aperture (nm) |
---|---|---|---|---|
CGCS | 0.88 | 0.87 | 0.0013 | 18.05 |
SiO2/Al2O3 = 3.40 | 98.24 | 88.99 | 0.0036 | 8.35 |
SiO2/Al2O3 = 5.20 | 161.06 | 153.35 | 0.0021 | 5.57 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, W.; Zhang, S.; Zhao, P.; Zhang, S.; Feng, N.; Lan, L.; Zhang, X.; Sun, Y.; Li, Y.; Ma, Y. Green Synthesis Method and Application of NaP Zeolite Prepared by Coal Gasification Coarse Slag from Ningdong, China. Appl. Sci. 2020, 10, 2694. https://doi.org/10.3390/app10082694
Ji W, Zhang S, Zhao P, Zhang S, Feng N, Lan L, Zhang X, Sun Y, Li Y, Ma Y. Green Synthesis Method and Application of NaP Zeolite Prepared by Coal Gasification Coarse Slag from Ningdong, China. Applied Sciences. 2020; 10(8):2694. https://doi.org/10.3390/app10082694
Chicago/Turabian StyleJi, Wenxin, Shiyue Zhang, Pengde Zhao, Shasha Zhang, Ning Feng, Liping Lan, Xiaoguang Zhang, Yonggang Sun, Yuanyuan Li, and Yulong Ma. 2020. "Green Synthesis Method and Application of NaP Zeolite Prepared by Coal Gasification Coarse Slag from Ningdong, China" Applied Sciences 10, no. 8: 2694. https://doi.org/10.3390/app10082694
APA StyleJi, W., Zhang, S., Zhao, P., Zhang, S., Feng, N., Lan, L., Zhang, X., Sun, Y., Li, Y., & Ma, Y. (2020). Green Synthesis Method and Application of NaP Zeolite Prepared by Coal Gasification Coarse Slag from Ningdong, China. Applied Sciences, 10(8), 2694. https://doi.org/10.3390/app10082694