Cup-To-Neck Contact and Range of Motion after Total Hip Arthroplasty with Large Head Diameters: An Original Three-Dimensional Combined Gait and Videofluoroscopy Analysis
Abstract
:1. Introduction
2. Methods
2.1. General Information
2.2. Surgical Procedure
2.3. Instrumental Analyses at Follow-Up
2.3.1. Gait Analysis
2.3.2. Videofluoroscopy Analysis
2.4. Statistical Analysis
3. Results
3.1. General Overview
3.2. Clinical and Radiological Examinations
3.3. Instrumental Analyses at Follow-Up
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Kenney, C.; Dick, S.; Lea, J.; Liu, J.; Ebraheim, N.A. A systematic review of the causes of failure of Revision Total Hip Arthroplasty. J. Orthop. 2019, 16, 393–395. [Google Scholar] [CrossRef] [PubMed]
- Hamel, M.B.; Toth, M.; Legedza, A.; Rosen, M.P. Joint replacement surgery in elderly patients with severe osteoarthritis of the hip or knee: Decision making, postoperative recovery, and clinical outcomes. Arch. Intern. Med. 2008, 168, 1430–1440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kunutsor, S.; Barrett, M.; Beswick, A.; Judge, A.; Blom, A.; Wylde, V.; Whitehouse, M. Risk factors for dislocation after primary total hip replacement: A systematic review and meta-analysis of 125 studies involving approximately five million hip replacements. Lancet Rheumatol. 2019, 1, e111–e121. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Xiao, H.; Xue, F. Causes of and treatment options for dislocation following total hip arthroplasty. Exp. Ther. Med. 2019, 18, 1715–1722. [Google Scholar] [CrossRef] [Green Version]
- Woerner, M.; Weber, M.; Sendtner, E.; Springorum, R.; Worlicek, M.; Craiovan, B.; Grifka, J.; Renkawitz, T. Soft tissue restricts impingement-free mobility in total hip arthroplasty. Int. Orthop. 2017, 41, 277–282. [Google Scholar] [CrossRef]
- Brown, T.D.; Callaghan, J.J. Impingement in Total Hip Replacement: Mechanisms and Consequences. Curr. Orthop. 2008, 22, 376–391. [Google Scholar] [CrossRef] [Green Version]
- Agarwala, S.; Vijayvargiya, M.; Chaudhari, S. Restoring Natural Hip Movements with Large Head (Ceramic on Ceramic) Total Hip Replacement: Experience of Our 150 Patients over 6 Years. Open J. Orthop. 2017. [Google Scholar] [CrossRef]
- Jameson, S.S.; Lees, D.; James, P.; Serrano-Pedraza, I.; Partington, P.F.; Muller, S.D.; Meek, R.M.; Reed, M.R. Lower rates of dislocation with increased femoral head size after primary total hip replacement: A five-year analysis of NHS patients in England. J. Bone Jt. Surg. Br. 2011, 93, 876–880. [Google Scholar] [CrossRef] [Green Version]
- Howie, D.W.; Holubowycz, O.T.; Middleton, R.; Large Articulation Study, G. Large femoral heads decrease the incidence of dislocation after total hip arthroplasty: A randomized controlled trial. J. Bone Jt. Surg. Am. 2012, 94, 1095–1102. [Google Scholar] [CrossRef] [Green Version]
- Kluess, D.; Martin, H.; Mittelmeier, W.; Schmitz, K.P.; Bader, R. Influence of femoral head size on impingement, dislocation and stress distribution in total hip replacement. Med. Eng. Phys. 2007, 29, 465–471. [Google Scholar] [CrossRef]
- Lavigne, M.; Vendittoli, P.A.; Virolainen, P.; Corten, K.; Martinez, M.; Zicat, B.; Peter, V.; Bloem, R.; Miazzolo, N.; Remes, V. Large head ceramic-on-ceramic bearing in primary total hip arthroplasty: Average 3-year follow-up of a multicentre study. Hip Int. 2019. [Google Scholar] [CrossRef] [PubMed]
- Blakeney, W.G.; Beaulieu, Y.; Puliero, B.; Lavigne, M.; Roy, A.; Masse, V.; Vendittoli, P.A. Excellent results of large-diameter ceramic-on-ceramic bearings in total hip arthroplasty: Is Squeaking Related to Head Size. Bone Jt. J. 2018, 100, 1434–1441. [Google Scholar] [CrossRef]
- Cooper, H.J.; Della Valle, C.J. Large diameter femoral heads: Is bigger always better? Bone Jt. J. 2014, 96, 23–26. [Google Scholar] [CrossRef] [PubMed]
- Rathi, P.; Pereira, G.C.; Giordani, M.; Di Cesare, P.E. The pros and cons of using larger femoral heads in total hip arthroplasty. Am. J. Orthop. 2013, 42, E53–E59. [Google Scholar] [PubMed]
- Faldini, C.; Stefanini, N.; Fenga, D.; Neonakis, E.M.; Perna, F.; Mazzotti, A.; Pilla, F.; Triantafyllopoulos, I.K.; Traina, F. How to prevent dislocation after revision total hip arthroplasty: A systematic review of the risk factors and a focus on treatment options. J. Orthop. Traumatol. 2018, 19, 17. [Google Scholar] [CrossRef] [PubMed]
- Ewen, A.M.; Stewart, S.; St Clair Gibson, A.; Kashyap, S.N.; Caplan, N. Post-operative gait analysis in total hip replacement patients-a review of current literature and meta-analysis. Gait Posture 2012, 36, 1–6. [Google Scholar] [CrossRef]
- Temporiti, F.; Zanotti, G.; Furone, R.; Molinari, S.; Zago, M.; Loppini, M.; Galli, M.; Grappiolo, G.; Gatti, R. Gait analysis in patients after bilateral versus unilateral total hip arthroplasty. Gait Posture 2019, 72, 46–50. [Google Scholar] [CrossRef]
- Grip, H.; Nilsson, K.G.; Hager, C.K.; Lundstrom, R.; Ohberg, F. Does the Femoral Head Size in Hip Arthroplasty Influence Lower Body Movements during Squats, Gait and Stair Walking? A Clinical Pilot Study Based on Wearable Motion Sensors. Sensors 2019, 19. [Google Scholar] [CrossRef] [Green Version]
- Mayr, E.; Nogler, M.; Benedetti, M.G.; Kessler, O.; Reinthaler, A.; Krismer, M.; Leardini, A. A prospective randomized assessment of earlier functional recovery in THA patients treated by minimally invasive direct anterior approach: A gait analysis study. Clin. Biomech 2009, 24, 812–818. [Google Scholar] [CrossRef]
- Chevillotte, C.J.; Ali, M.H.; Trousdale, R.T.; Pagnano, M.W. Variability in hip range of motion on clinical examination. J. Arthroplast. 2009, 24, 693–697. [Google Scholar] [CrossRef]
- Poulsen, E.; Christensen, H.W.; Penny, J.O.; Overgaard, S.; Vach, W.; Hartvigsen, J. Reproducibility of range of motion and muscle strength measurements in patients with hip osteoarthritis—An inter-rater study. BMC Musculoskelet. Disord. 2012, 13, 242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hemmerich, A.; Brown, H.; Smith, S.; Marthandam, S.S.; Wyss, U.P. Hip, knee, and ankle kinematics of high range of motion activities of daily living. J. Orthop. Res. 2006, 24, 770–781. [Google Scholar] [CrossRef] [PubMed]
- Glowinski, S.; Blazejewski, A.; Krzyzynski, T. Inertial Sensors and Wavelets Analysis as a Tool for Pathological Gait Identification. In Innovations in Biomedical Engineering; Gzik, M., Tkacz, E., Paszenda, Z., Piętka, E., Eds.; Springer: Cham, Switzerland, 2016; pp. 106–114. [Google Scholar] [CrossRef]
- Bengs, B.C.; Sangiorgio, S.N.; Ebramzadeh, E. Less range of motion with resurfacing arthroplasty than with total hip arthroplasty: In vitro examination of 8 designs. Acta Orthop. 2008, 79, 755–762. [Google Scholar] [CrossRef]
- Colbrunn, R.W.; Bottros, J.J.; Butler, R.S.; Klika, A.K.; Bonner, T.F.; Greeson, C.; van den Bogert, A.J.; Barsoum, W.K. Impingement and stability of total hip arthroplasty versus femoral head resurfacing using a cadaveric robotics model. J. Orthop. Res. 2013, 31, 1108–1115. [Google Scholar] [CrossRef] [PubMed]
- Komiyama, K.; Hamai, S.; Ikebe, S.; Yoshimoto, K.; Higaki, H.; Shiomoto, K.; Gondo, H.; Hara, D.; Wang, Y.; Nakashima, Y. In vivo kinematic analysis of replaced hip during stationary cycling and computer simulation of optimal cup positioning against prosthetic impingement. Clin. Biomech. 2019, 68, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Fetto, J.F. A Dynamic Model of Hip Joint Biomechanics: The Contribution of Soft Tissues. Adv. Orthop. 2019, 2019, 5804642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turley, G.A.; Williams, M.A.; Wellings, R.M.; Griffin, D.R. Evaluation of range of motion restriction within the hip joint. Med. Biol. Eng. Comput. 2013, 51, 467–477. [Google Scholar] [CrossRef] [Green Version]
- Ezquerra, L.; Quilez, M.P.; Perez, M.A.; Albareda, J.; Seral, B. Range of Movement for Impingement and Dislocation Avoidance in Total Hip Replacement Predicted by Finite Element Model. J. Med. Biol. Eng. 2017, 37, 26–34. [Google Scholar] [CrossRef] [Green Version]
- Vanrusselt, J.; Vansevenant, M.; Vanderschueren, G.; Vanhoenacker, F. Postoperative radiograph of the hip arthroplasty: What the radiologist should know. Insights Imaging 2015, 6, 591–600. [Google Scholar] [CrossRef] [Green Version]
- Bahl, J.S.; Nelson, M.J.; Taylor, M.; Solomon, L.B.; Arnold, J.B.; Thewlis, D. Biomechanical changes and recovery of gait function after total hip arthroplasty for osteoarthritis: A systematic review and meta-analysis. Osteoarthr. Cartil. 2018, 26, 847–863. [Google Scholar] [CrossRef] [Green Version]
- Amstutz, H.C.; Le Duff, M.J. Effects of physical activity on long-term survivorship after metal-on-metal hip resurfacing arthroplasty: Is it safe to return to sports? Bone Jt. J. 2019, 101, 1186–1191. [Google Scholar] [CrossRef] [PubMed]
- Shiomoto, K.; Hamai, S.; Hara, D.; Higaki, H.; Gondo, H.; Wang, Y.; Ikebe, S.; Yoshimoto, K.; Komiyama, K.; Harada, S.; et al. In vivo kinematics, component alignment and hardware variables influence on the liner-to-neck clearance during chair-rising after total hip arthroplasty. J. Orthop. Sci. 2019. [Google Scholar] [CrossRef] [PubMed]
- Leardini, A.; Sawacha, Z.; Paolini, G.; Ingrosso, S.; Nativo, R.; Benedetti, M.G. A new anatomically based protocol for gait analysis in children. Gait Posture 2007, 26, 560–571. [Google Scholar] [CrossRef] [PubMed]
- Banks, S.A.; Hodge, W.A. Accurate measurement of three-dimensional knee replacement kinematics using single-plane fluoroscopy. IEEE Trans. Biomed. Eng. 1996, 43, 638–649. [Google Scholar] [CrossRef] [PubMed]
- Cenni, F.; Leardini, A.; Pieri, M.; Berti, L.; Belvedere, C.; Romagnoli, M.; Giannini, S. Functional performance of a total ankle replacement: Thorough assessment by combining gait and fluoroscopic analyses. Clin. Biomech. 2013, 28, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Catani, F.; Belvedere, C.; Ensini, A.; Feliciangeli, A.; Giannini, S.; Leardini, A. In-vivo knee kinematics in rotationally unconstrained total knee arthroplasty. J. Orthop. Res. 2011, 29, 1484–1490. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Massimini, D.F.; Wang, G.; Warner, J.J.; Li, G. The accuracy and repeatability of an automatic 2D-3D fluoroscopic image-model registration technique for determining shoulder joint kinematics. Med. Eng. Phys. 2012, 34, 1303–1309. [Google Scholar] [CrossRef]
- Tsai, T.Y.; Li, J.S.; Wang, S.; Lin, H.; Malchau, H.; Li, G.; Rubash, H.; Kwon, Y.M. A novel dual fluoroscopic imaging method for determination of THA kinematics: In-vitro and in-vivo study. J. Biomech. 2013, 46, 1300–1304. [Google Scholar] [CrossRef]
- Komiyama, K.; Hamai, S.; Hara, D.; Ikebe, S.; Higaki, H.; Yoshimoto, K.; Shiomoto, K.; Gondo, H.; Wang, Y.; Nakashima, Y. Dynamic hip kinematics during squatting before and after total hip arthroplasty. J. Orthop. Surg. Res. 2018, 13, 162. [Google Scholar] [CrossRef] [Green Version]
- Glaser, D.; Dennis, D.A.; Komistek, R.D.; Miner, T.M. In vivo comparison of hip mechanics for minimally invasive versus traditional total hip arthroplasty. Clin. Biomech. 2008, 23, 127–134. [Google Scholar] [CrossRef]
- D’Isidoro, F.; Eschle, P.; Zumbrunn, T.; Sommer, C.; Scheidegger, S.; Ferguson, S.J. Determining 3D Kinematics of the Hip Using Video Fluoroscopy: Guidelines for Balancing Radiation Dose and Registration Accuracy. J. Arthroplast. 2017, 32, 3213–3218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belvedere, C.; Tamarri, S.; Notarangelo, D.P.; Ensini, A.; Feliciangeli, A.; Leardini, A. Three-dimensional motion analysis of the human knee joint: Comparison between intra- and post-operative measurements. Knee Surg. Sports Traumatol. Arthrosc. 2013, 21, 2375–2383. [Google Scholar] [CrossRef] [PubMed]
- Catani, F.; Ensini, A.; Belvedere, C.; Feliciangeli, A.; Benedetti, M.G.; Leardini, A.; Giannini, S. In vivo kinematics and kinetics of a bi-cruciate substituting total knee arthroplasty: A combined fluoroscopic and gait analysis study. J. Orthop. Res. 2009, 27, 1569–1575. [Google Scholar] [CrossRef] [PubMed]
- Harris, W.H. Traumatic arthritis of the hip after dislocation and acetabular fractures: Treatment by mold arthroplasty. An end-result study using a new method of result evaluation. J. Bone Jt. Surg. Am. 1969, 51, 737–755. [Google Scholar] [CrossRef]
- Zahiri, C.A.; Schmalzried, T.P.; Szuszczewicz, E.S.; Amstutz, H.C. Assessing activity in joint replacement patients. J. Arthroplast. 1998, 13, 890–895. [Google Scholar] [CrossRef]
- Amstutz, H.C.; Thomas, B.J.; Jinnah, R.; Kim, W.; Grogan, T.; Yale, C. Treatment of primary osteoarthritis of the hip. A comparison of total joint and surface replacement arthroplasty. J. Bone Jt. Surg. Am. 1984, 66, 228–241. [Google Scholar] [CrossRef]
- Dawson, J.; Fitzpatrick, R.; Carr, A.; Murray, D. Questionnaire on the perceptions of patients about total hip replacement. J. Bone Jt. Surg. Br. 1996, 78, 185–190. [Google Scholar] [CrossRef]
- Bellamy, N.; Buchanan, W.W.; Goldsmith, C.H.; Campbell, J.; Stitt, L.W. Validation study of WOMAC: A health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. J. Rheumatol. 1988, 15, 1833–1840. [Google Scholar]
- Petis, S.; Howard, J.L.; Lanting, B.L.; Vasarhelyi, E.M. Surgical approach in primary total hip arthroplasty: Anatomy, technique and clinical outcomes. Can. J. Surg. 2015, 58, 128–139. [Google Scholar] [CrossRef] [Green Version]
- Lewinnek, G.E.; Lewis, J.L.; Tarr, R.; Compere, C.L.; Zimmerman, J.R. Dislocations after total hip-replacement arthroplasties. J. Bone Jt. Surg. Am. 1978, 60, 217–220. [Google Scholar] [CrossRef]
- Leardini, A.; Biagi, F.; Merlo, A.; Belvedere, C.; Benedetti, M.G. Multi-segment trunk kinematics during locomotion and elementary exercises. Clin. Biomech. 2011, 26, 562–571. [Google Scholar] [CrossRef] [PubMed]
- Grood, E.S.; Suntay, W.J. A joint coordinate system for the clinical description of three-dimensional motions: Application to the knee. J. Biomech. Eng. 1983, 105, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.K.; Dures, E.; Beswick, A.D. Systematic review of the clinical effectiveness for long-term follow-up of total hip arthroplasty. Orthop. Res. Rev. 2019, 11, 69–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charbonnier, C.; Chague, S.; Ponzoni, M.; Bernardoni, M.; Hoffmeyer, P.; Christofilopoulos, P. Sexual activity after total hip arthroplasty: A motion capture study. J. Arthroplast. 2014, 29, 640–647. [Google Scholar] [CrossRef]
- Neonakis, E.M.; Perna, F.; Traina, F.; Faldini, O.; Antoniou, G.; Kyriakopoulos, G.; Triantafyllopoulos, I.K.; Megaloikonomos, P.D.; Faldini, C. Total hip arthroplasty and sexual activity: A systematic review. Musculoskelet. Surg. 2020, 104, 17–24. [Google Scholar] [CrossRef]
No | Head Diam. | Gender | Age (years) | Weight (kg) | Height (cm) | BMI | Operated Side |
---|---|---|---|---|---|---|---|
1 | 40 | F | 52.4 | 72 | 170 | 24.9 | L |
2 | 40 | F | 57.4 | 80 | 165 | 29.4 | L |
3 | 28 | M | 48.2 | 69 | 171 | 23.7 | L |
4 | 40 | M | 53.3 | 105 | 192 | 28.5 | L |
5 | 36 | M | 55.9 | 95 | 171 | 32.5 | R |
6 | 36 | F | 53.7 | 68 | 160 | 26.6 | R |
7 | 40 | F | 46.0 | 56 | 164 | 20.8 | L |
8 | 36 | F | 22.8 | 56 | 154 | 23.6 | R |
9 | 40 | M | 54.4 | 85 | 178 | 26.8 | L |
10 | 40 | M | 51.0 | 88 | 174 | 29.1 | L |
11 | 40 | M | 52.6 | 80 | 160 | 31.3 | R |
12 | 28 | F | 33.6 | 46 | 154 | 19.4 | L |
13 | 40 | M | 49.8 | 71 | 168 | 25.2 | L |
14 | 40 | M | 53.2 | 80 | 160 | 31.3 | L |
15 | 40 | M | 36.1 | 88 | 179 | 27.5 | L |
16 | 28 | F | 45.0 | 64 | 165 | 23.5 | R |
17 | 40 | M | 53.5 | 72 | 168 | 25.5 | L |
18 | 36 | F | 53.7 | 62 | 160 | 24.2 | L |
19 | 28 | F | 52.9 | 50 | 157 | 20.3 | R |
20 | 40 | F | 56.0 | 64 | 165 | 23.5 | R |
21 | 36 | F | 45.9 | 60 | 152 | 26.0 | R |
22 | 28 | F | 56.8 | 78 | 155 | 32.5 | L |
23 | 36 | F | 47.4 | 64 | 160 | 25.0 | R |
Overall | 36.3 ± 4.8 | 13 F/10 M | 49.2 ± 8.3 | 71.9 ± 14.6 | 195.3 ± 9.5 | 26.1 ± 3.7 | 14 L/9 R |
Motor Tasks | Sagittal | Frontal | Axial | |
---|---|---|---|---|
Walking | ROM | 37.1 ± 7.6 (1.9 ÷ 48.6) | 10.5 ± 3.1 (5.6 ÷ 17.3) | 10.1 ± 4.0 (4.2 ÷ −18.7) |
Peak | 25.9 ± 8.0 (8.9 ÷ 45.2) | 7.6 ± 3.6 (1.0 ÷1 6.2) | −1.8 ±10.2 (−21.5 ÷ 14.9) | |
Stair climbing | ROM | 53.0 ± 6.2 (42.0 ÷ 63.6) | 12.0 ± 5.2 (3.6 ÷ 24.4) | 14.8 ± 5.6 (6.4 ÷ −23.9) |
Peak | 54.3 ± 8.3 (32.8 ÷ 68.3) | 8.7 ± 5.7 (0.8 ÷ 20.9) | 2.5 ± 11.0 (−19.9 ÷ 21.6) | |
Stair descending | ROM | 27.6 ± 6.1 (15.0 ÷ 43.1) | 11.5 ± 3.4 (6.3 ÷ 19.2) | 13.2 ± 4.0 (8.0 ÷ −22.0) |
Peak | 32.8 ± 8.3 (20.1 ÷ 54.2) | 8.2 ± 4.9 (1.0 ÷ 21.4) | −1.3 ± 10.6 (−18.0 ÷ −17.1) | |
Chair raising/sitting | ROM | 78.4 ± 10.2 (56.2 ÷ 97.4) | 8.8 ± 4.6 (2.6 ÷ 20.7) | 26.1 ± 12.5 (8.7 ÷ −48.7) |
Peak | 78.0 ± 8.5 (61.2 ÷ 94.9) | 0.2 ± 5.0 (−8.2 ÷ 13.2) | 13.3 ±14.5 (−12.1 ÷ −40.9) | |
Squat | ROM | 70.4 ± 16.2 (39.7 ÷ 107.5) | 10.4 ± 5.8 (2.8 ÷ 20.6) | 23.5 ±13.7 (4.9 ÷ −54.5) |
Peak | 73.7 ± 12.7 (53.0 ÷ 96.8) | 1.2 ± 5.5 (−13.8 ÷ 9.4) | 14.7 ± 14.6 (−10.9 ÷ 49.2) | |
High step flexion | ROM | 86.4 ± 12.3 (63.9 ÷ 110.2) | 18.2 ± 6.7 (8.0 ÷ 34.7) | 29.4 ± 15.9 (10.2 ÷ 59.7) |
Peak | 87.4 ± 11.0 (66.8 ÷ 106.0) | −12.8 ± 7.1 (−28.0 ÷ 1.1) | 17.7 ± 16.2 (7.5 ÷ −52.4) | |
Tailor sitting | ROM | 1.9 ± 1.4 (0.3 ÷ 5.3) | 1.9 ± 2.0 (0.2 ÷ 8.9) | 2.1 ± 1.5 (0.1 ÷ −6.0) |
Peak | 73.8 ± 11.3 (46.1 ÷ 91.8) | 4.2 ± 8.5 (−13.1 ÷ 21.0) | 4.8 ±13.4 (−26.6 ÷ 25.8) | |
Lunge forward | ROM | 71.0 ± 15.8 (33.2 ÷ 99.0) | 18.8 ± 7.4 (7.1 ÷ 39.3) | 23.7 ±10.6 (9.1 ÷ −44.5) |
Peak | 73.0 ± 13.7 (40.0 ÷ 98.4) | 9.5 ± 7.1 (−0.7 ÷ 22.8) | 12.5 ±15.1 (−12.1 ÷ 38.7) | |
Lunge backward | ROM | 24.9 ± 7.5 (13.8 ÷ 44.1) | 16.8 ± 8.8 (2.7 ÷ 36.8) | 18.7 ±11.4 (6.9 ÷ −58.9) |
Peak | −15.0 ± 7.4 (−30.9 ÷ 1.9) | −11.0 ± 8.3 (−32.6 ÷ 3.0) | −21.9 ± 10.2 (−47.1 ÷ −7.6) |
Motor Tasks | StL Distance |
---|---|
Squat | 11.4 ± 6.1 (5.2 ÷ 21.9) |
High step flexion | 8.7 ±5.2 (2.3 ÷ 17.3) |
Tailor sitting | 13.0 ± 5.9 (2.2 ÷ 19.8) |
Lunge forward | 11.8 ±5.1 (3.0 ÷ 19.6) |
Lunge backward | 11.9 ±5.4 (2.3 ÷ 21.6) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belvedere, C.; Lullini, G.; Ortolani, M.; Ensini, A.; Durante, S.; Ruberto, F.; Turner, E.; Leardini, A. Cup-To-Neck Contact and Range of Motion after Total Hip Arthroplasty with Large Head Diameters: An Original Three-Dimensional Combined Gait and Videofluoroscopy Analysis. Appl. Sci. 2020, 10, 2695. https://doi.org/10.3390/app10082695
Belvedere C, Lullini G, Ortolani M, Ensini A, Durante S, Ruberto F, Turner E, Leardini A. Cup-To-Neck Contact and Range of Motion after Total Hip Arthroplasty with Large Head Diameters: An Original Three-Dimensional Combined Gait and Videofluoroscopy Analysis. Applied Sciences. 2020; 10(8):2695. https://doi.org/10.3390/app10082695
Chicago/Turabian StyleBelvedere, Claudio, Giada Lullini, Maurizio Ortolani, Andrea Ensini, Stefano Durante, Francesco Ruberto, Emma Turner, and Alberto Leardini. 2020. "Cup-To-Neck Contact and Range of Motion after Total Hip Arthroplasty with Large Head Diameters: An Original Three-Dimensional Combined Gait and Videofluoroscopy Analysis" Applied Sciences 10, no. 8: 2695. https://doi.org/10.3390/app10082695
APA StyleBelvedere, C., Lullini, G., Ortolani, M., Ensini, A., Durante, S., Ruberto, F., Turner, E., & Leardini, A. (2020). Cup-To-Neck Contact and Range of Motion after Total Hip Arthroplasty with Large Head Diameters: An Original Three-Dimensional Combined Gait and Videofluoroscopy Analysis. Applied Sciences, 10(8), 2695. https://doi.org/10.3390/app10082695