Illustration of the Effects of Five Fungi on Acacia saligna Wood Organic Acids and Ultrastructure Alterations in Wood Cell Walls by HPLC and TEM Examinations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wood Samples and Isolates Tested
2.2. Determination of pH Value
2.3. Sample Preparation and Extraction Method
2.4. High-Performance Liquid Chromatography (HPLC)
2.5. Transmission Electron Microscope (TEM)
3. Results and Discussion
3.1. pH Value
3.2. HPLC Analysis of Organic Acids
3.3. TEM Examination of the Inoculcated A. saligna Wood with Fungi
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pettersen, R.C. The chemical composition of wood. In The Chemistry of Wood, Advances in Chemistry Series 207; Rowell, R.M., Ed.; American Chemical Society: Washington, DC, USA, 1984; pp. 57–126. [Google Scholar]
- Walker, J.C.F. Primary Wood Processing. In Principles and Practice, 1st ed.; Chapman and Hall: London, UK, 1993; p. 285. [Google Scholar]
- Schultz, T.P.; Nicholas, D.D. Development of Environmentally-benign Wood Preservatives based on the Combination of Organic Biocides with Antioxidants and Metal chelators. Phytochemistry 2002, 61, 555–560. [Google Scholar] [CrossRef]
- Syofuna, A.; Banana, A.Y.; Nakabonge, G. Efficiency of natural wood extractives as wood preservatives against termite attack. Maderas. Ciencia Tecnol. 2012, 14, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Woodard, A.C.; Milner, H.R. Sustainability of Construction Materials, 2nd ed.; Woodhead Publishing: Cambridge, UK, 2016. [Google Scholar]
- Blanchette, R.A.; Obst, J.R.; Hedges, J.I.; Weliky, K. Resistance of hardwood vessels to degradation by white rot Basidiomycetes. Canad. J. Bot. 1988, 66, 1841–1847. [Google Scholar] [CrossRef]
- Hinterstoisser, B.; Steke, B.; Schwanninger, M. Wood: Raw material- material-Source of Energy for the future. Lignovisionen 2000, 2, 29–36. [Google Scholar]
- Mansour, M.M.A.; Salem, M.Z.M. Evaluation of wood treated with some natural extracts and Paraloid B-72 against the fungus Trichoderma harzianum: Wood elemental composition, in-vitro and application evidence. Int. Biodeter. Biodegr. 2015, 100, 62–69. [Google Scholar] [CrossRef]
- Mansour, M.M.A.; Abdel-Megeed, A.; Nasser, R.A.; Salem, M.Z.M. Comparative evaluation of some woody trees methanolic extracts and Paraloid B-72 against phytopathogenic mold fungi Alternaria tenuissima and Fusarium culmorum. BioResources 2015, 10, 2570–2584. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Dai, Z.; Ding, S.; Wyman, C.E. Enzymatic hydrolysis of cellulosic biomass. Biofuels 2011, 2, 421–450. [Google Scholar] [CrossRef] [Green Version]
- Hamed, S.A.M.; Mansour, M.M. Comparative study on micromorphological changes in wood due to soft-rot fungi and surface mold. Sci. Cult. 2018, 4, 35–41. [Google Scholar]
- Hamed, S.A.M. In-vitro studies on wood degradation in soil by soft-rot fungi: Aspergillus niger and Penicillium chrysogenum. Int. Biodeter. Biodegr. 2013, 78, 98–102. [Google Scholar] [CrossRef]
- Unger, A.; Schniewind, A.P.; Unger, W. Conservation of Wood Artifacts; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Górny, R.L.; Reponen, T.; Willeke, K.; Robine, E.; Boissier, M.; Grinshpun, S.A. Release of fungal fragments from moldy surfaces. Appl. Environ. Microbiol. 2002, 68, 3522–3531. [Google Scholar]
- Madsen, A.M.; Kruse, P.; Schneider, T. Characterization of microbial particle release from biomass and building material surfaces for inhalation exposure risk assessment. Ann. Occup. Hyg. 2006, 50, 175–187. [Google Scholar] [PubMed] [Green Version]
- Connolly, J.H.; Jellison, J. Calcium translocation, calcium oxalate accumulation, and hyphal sheath morphology in the white-rot fungus Resinicium Bicolor. Can. J. Bot. 1995, 73, 927–936. [Google Scholar] [CrossRef]
- Dutton, M.V.; Evans, C.S. Oxalate production by fungi: Its role in pathogenicity and ecology in the soil environment. Can. J. Microbiol. 1996, 42, 881–895. [Google Scholar] [CrossRef]
- Jarosz-Wilkolazka, A.; Gadd, G.M. Oxalate production by wood-rotting fungi growing in toxic metal-amended medium. Chemosphere 2003, 52, 541–547. [Google Scholar] [CrossRef]
- Clausen, C.A.; Kenealy, W.; Lebow, P.K. Oxalate analysis methodology for decayed wood. Int. Biodeter. Biodegr. 2008, 62, 372–375. [Google Scholar] [CrossRef]
- Eastwood, D.C.; Floudas, D.; Binder, M.; Majcherczyk, A.; Schneider, P.; Aerts, A.; Asiegbu, F.O.; Baker, S.E.; Barry, K.; Bendiksby, M.; et al. The plant cell wall–decomposing machinery underlies the functional diversity of forest fungi. Science 2011, 333, 762–765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, F.; Mali, T.; Lundell, T.K. Polyporales Brown Rot Species Fomitopsis pinicola: Enzyme Activity Profiles, Oxalic Acid Production, and Fe3+-Reducing Metabolite Secretion. Appl. Environ. Microbiol. 2018, 84, e02662-17. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Presley, G.N.; Hammel, K.E.; Ryu, J.S.; Menke, J.R.; Figueroa, M.; Hu, D.; Orr, G.; Schilling, J.S. Localizing gene regulation reveals a staggered wood decay mechanism for the brown rot fungus Postia placenta. Proc. Nat. Acad. Sci. USA 2016, 113, 10968–10973. [Google Scholar] [CrossRef] [Green Version]
- Presley, G.N.; Schilling, J. Distinct growth and secretome strategies for two taxonomically divergent brown rot fungi. Appl. Environ. Microbiol. 2017, 83, e02987. [Google Scholar] [CrossRef] [Green Version]
- Bech-Anderson, J. Production, Function, and Neutralization of Acid Produced by the Dry Rot Fungus and Other Brown-Rot Fungi; International Research Group on Wood Preservation, IRG/WP/1330: Stockholm, Sweden, 1987; p. 16. [Google Scholar]
- Green, F.; Larsen, M.J.; Winandy, J.E.; Highley, T.L. Role of oxalic acid in incipient brown-rot decay. Mater. Org. 1991, 26, 191–213. [Google Scholar]
- Shimada, M.; Akamatsu, Y.; Ohta, A.; Takahashi, M. Biochemical Relationships between Biodegradation of Cellulose and Formation of Oxalic Acid in Brown-Rot Wood Decay; International Research Group on Wood Preservation, IRG/WP/ 1472: Stockholm, Sweden, 1991; p. 3. [Google Scholar]
- Clausen, C.A.; Green III, F. Oxalic acid overproduction by copper-tolerant brown-rot basidiomycetes on southern yellow pine treated with copper-based preservatives. Int. Biodeter. Biodegr. 2003, 51, 138–144. [Google Scholar] [CrossRef]
- Kartal, S.N.; Katsumata, N.; Imamura, Y. Removal of copper, chromium, and arsenic from CCA-treated wood by organic acids released by mold and staining fungi. Forest Prod. J. 2006, 56, 33–37. [Google Scholar]
- Oramahi, H.A.; Yoshimura, T. Antifungal and antitermitic activities of wood vinegar from Vitex pubescens Vahl. Wood Sci. 2013, 59, 344–350. [Google Scholar] [CrossRef]
- Chungsiriporn, J.; Pongyeela, P.; Iewkittayakorn, J. Use of wood vinegar as fungus and malodor retarding agent for natural rubber products. Songklanakarin J. Sci. Technol. 2018, 40, 87–92. [Google Scholar]
- Hofrichter, M.; Vares, T.; Kalsi, M.; Galkin, S.; Scheibner, K.; Fritsche, W.; Hatakka, A. Production of manganese peroxidase and organic acids and mineralization of 14C-labelled lignin (14C-DHP) during solid-state fermentation of wheat straw with the white rot fungus Nematoloma Frowardii. Appl. Environ. Microbiol. 1999, 65, 1864–1870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brunner, I.; Goren, A.; Schlumpf, A. Patterns of organic acids exuded by pioneering fungi from a glacier forefield are affected by carbohydrate sources. Environ. Res. Lett. 2014, 9, 025002. [Google Scholar] [CrossRef] [Green Version]
- Conkova, E.; Para, L.; Kocisova, A. Inhibition of growth of microscopic fungi with organic acids. Vet. Med. 1993, 38, 723–727. [Google Scholar]
- Lin, C.D.; Chen, T.C. Relative antifungal efficacies of phosphoric acid and other compounds on fungi isolated from poultry feed. Animal Feed Sci. Technol. 1995, 54, 217–226. [Google Scholar] [CrossRef]
- Pelaez, A.M.L.; Catano, C.A.S.; Yepes, E.A.Q.; Villarroel, R.R.G.; Antoni, G.L.D.; Giannuzzi, L. Inhibitory activity of lactic and acetic acid on Aspergillus flavus growth for food preservation. Food Cont. 2012, 24, 177–183. [Google Scholar] [CrossRef]
- Hassan, R.; El-Kadi, S.; Sand, M. Effect of some organic acids on some fungal growth and their toxins production. Inter. J. Adv. Biol. 2015, 2, 1–11. [Google Scholar] [CrossRef]
- Hatakka, A.; Hammel, K.E. Fungal biodegradation of lignocelluloses. In Industrial Applications; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Lundell, T.K.; Mäkelä, M.R.; de Vries, R.P.; Hildén, K.S. Genomics, lifestyles and future prospects of wood-decay and litter-decomposing basidiomycota. In Advances in Botanical Research; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Miyazaki, K.; Tsuchiya, Y.; Okuda, T. Specific PCR assays for the detection of Trichoderma harzianum causing green mold disease during mushroom cultivation. Mycoscience 2009, 50, 94–99. [Google Scholar] [CrossRef]
- Wang, T.; Zhao, J.; Ma, G.; Bao, S.; Wu, X. Leaf blight of sunflower caused by Alternaria tenuissima and A. alternata in Beijing, China. Canad. J. Plant Pathol. 2019, 41, 372–378. [Google Scholar] [CrossRef]
- Salem, M.Z.M.; Zidan, Y.E.; El Hadidi, N.M.N.; Mansour, M.M.A.; Abo Elgat, W.A.A. Evaluation of usage three natural extracts applied to three commercial wood species against five common molds. Int. Biodeter. Biodegr. 2016, 110, 206–226. [Google Scholar] [CrossRef]
- Salem, M.Z.M.; Abo Elgat, W.A.A.; Taha, A.S.; Fares, Y.G.; Ali, H.M. Impact of Three Natural Oily Extracts as Pulp Additives on the Mechanical, Optical, and Antifungal Properties of Paper Sheets Made from Eucalyptus camaldulensis and Meryta sinclairii Wood Branches. Materials 2020, 13, 1292. [Google Scholar] [CrossRef] [Green Version]
- Kenealy, W.; Horn, E.; Davis, M.; Swaney, R.; Houtman, C. Vapor-phase diethyl oxalate pretreatment of wood chips: Part 2. Release of hemicellulosic carbohydrates. Holzforschung 2007, 61, 230–235. [Google Scholar] [CrossRef]
- Humar, M.; Petric, M.; Pohleven, F. Changes of the pH value of impregnated wood during exposure to wood-rotting fungi. Holz Roh-und Werksloff 2001, 59, 288–293. [Google Scholar] [CrossRef]
- Li, H.; Chai, X.-S.; DeMartini, N. Oxalate Release and Formation during Alkaline Pulping. J. Wood Chem. Technol. 2012, 32, 187–197. [Google Scholar] [CrossRef]
- Camaselle, C.; Bohlmann, J.T.; Núñez, M.J.; Lema, J.M. Oxalic acid production by Aspergillus niger. Bioprocess Eng. 1998, 19, 245–252. [Google Scholar] [CrossRef]
- Kartal, S.N.; Kakitani, T.; Imamura, Y. Bioremediation of CCA-C treated wood by Aspergillus niger fermentation. Holz alz Roh Werkstoff 2004, 62, 64–68. [Google Scholar] [CrossRef]
- Kartal, S.N.; Imamura, Y. Removal of copper, chromium, and arsenic from CCA-C treated wood: Aspergillus niger fermentation and acid extraction. In Proceedings of the IAWPS 2003 International Conference on Forest Products, Daejeon, South Korea, 21–24 April 2003; pp. 480–485. [Google Scholar]
- Shimada, M.; Akamatsu, Y.; Tokimatsu, T.; Mii, K.; Hattori, T. Possible biochemical roles of oxalic acid as a low molecular weight compound involved in brown-rot and white-rot wood decays. J. Biotechnol. 1997, 53, 103–113. [Google Scholar] [CrossRef]
- Akamatsu, Y.; Takahasihi, M.; Shimada, M. Cell-free extraction of oxaloacetase from white-rot fungi, including Coriolus versicolor. Wood Res. 1993, 79, 1–6. [Google Scholar]
- Kubicek-Pranz, E.M. Nutrition, cellular structure and basic metabolic pathways in Trichoderma and Gliocladium. In Trichoderma and Gliocladium. Basic Biology, Taxonomy and Genetics; Harman, G.E., Kubicek, C.P., Eds.; Taylor & Francis: London, UK, 1998. [Google Scholar]
- Takao, S. Organic acid production by basidiomycetes, I. Screening of acid-producing strains. Appl. Microbiol. 1965, 13, 732–737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimada, M.; Ma, D.B.; Akamatsu, Y.; Hattori, T. A proposed role of oxalic acid in wood decay systems of wood-rolling basidiomycetes. FEMS Microbiol. Rev. 1994, 13, 285–296. [Google Scholar] [CrossRef]
- Goodell, B.; Jellison, J.; Liu, J.; Daniel, G.; Paszczynski, A.; Fekete, F.; Krishnamurthy, S.; Jun, L.; Xu, G. Low molecular weight chelators and phenolic compounds isolated from wood decay fungi and their role in the fungal biodegradation of wood. J. Biotechnol. 1997, 53, 133–162. [Google Scholar] [CrossRef]
- Papagianni, M. Advances in citric acid fermentation by Aspergillus niger: Biochemical aspects, membrane transport and modeling. Biotechnol. Adv. 2007, 25, 244–263. [Google Scholar] [CrossRef] [PubMed]
- Liaud, N.; Giniés, C.; Navarro, D.; Fabre, N.; Crapart, S.; Herpoël- Gimbert, I.; Levasseur, A.; Raouche, S.; Sigoillot, J.-C. Exploring fungal biodiversity: Organic acid production by 66 strains of filamentous fungi. Fungal Biol. Biotechnol. 2014, 1, 1. [Google Scholar] [CrossRef] [Green Version]
- Upton, D.J.; McQueen-Mason, S.J.; Wood, A.J. An accurate description of Aspergillus niger organic acid batch fermentation through dynamic metabolic modelling. Biotechnol. Biofuels 2017, 10, 258. [Google Scholar] [CrossRef] [Green Version]
- Bercovitz, A.; Peleg, Y.; Battat, E.; Rokem, J.S.; Goldberg, I. Localization of pyruvate carboxylase in organic acid producing Aspergillus strains. Appl. Environ. Microbiol. 1990, 56, 1594–1597. [Google Scholar] [CrossRef] [Green Version]
- Ikram-ul, H.; Ali, S.; Qadeer, M.A.; Iqbal, J. Citric acid production by selected mutants of Aspergillus niger from cane molasses. Bioresour. Technol. 2004, 93, 125–130. [Google Scholar] [CrossRef]
- Alcantara, J.; Mondala, A.; Hugheym, L.; Shields, S. Direct Succinic Acid Production from Minimally Pretreated Biomass Using Sequential Solid-State and Slurry Fermentation with Mixed Fungal Cultures. Fermentation 2017, 3, 30. [Google Scholar] [CrossRef] [Green Version]
- Sazanova, K.V.; Shchiparev, S.M.; Vlasov, D.Y. Formation of organic acids by fungi isolated from the surface of stone monuments. Microbiol. 2014, 83, 516–522. [Google Scholar] [CrossRef]
- Jennings, D.H. The Physiology of Fungal Nutrition; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Osono, T.; Takeda, H. Effects of organic chemical quality and mineral nitrogen addition on lignin and holocellulose decomposition of beech leaf litter by Xylaria sp. Eur. J. Soil Biol. 2001, 37, 17–23. [Google Scholar] [CrossRef]
- Komon-Zelazowska, M.; Bissett, J.; Zafari, D.; Hatvani, L.; Manczinger, L.; Woo, S.; Lorito, M.; Kredics, L.; Kubicek, C.P.; Druzhinina, I.S. Genetically closely related but oyster mushroom farms worldwide species cause green mold disease in phenotypically divergent Trichoderma. Appl. Environ. Microbiol. 2007, 73, 7415–7426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schubert, M.; Fink, S.; Schwarze, F.W.M.R. In vitro screening of an antagonistic Trichoderma strain against wood decay fungi. Arboric. J. 2008, 31, 227–248. [Google Scholar] [CrossRef]
Treatment | pH Value |
---|---|
Control | 6.06 |
A. flavus | 5.60 |
A. niger | 4.39 |
A. tenuissima | 5.24 |
F. culmorum | 5.81 |
T. harzianum | 5.40 |
Organic Acid | Amount (µg/g o.d. Sample) | |||||
---|---|---|---|---|---|---|
Control | A. flavus | A. niger | A. tenuissima | F. culmorum | T. harzianum | |
Oxalic acid | 293.34 | 362.08 | 1202.53 | 167.33 | 431.85 | 245.01 |
Citric acid | ND | 110 | 2499.63 | ND | ND | ND |
Tartaric acid | ND | ND | 1150.98 | ND | ND | ND |
Succinic acid | ND | ND | 2096.28 | 32.33 | ND | ND |
Glutaric acid | ND | 23.34 | 2497.59 | ND | 27.88 | 64.46 |
Acetic acid | ND | ND | 2.04 | ND | ND | ND |
Propionic acid | ND | ND | 1.79 | ND | ND | ND |
Butyric acid | 0.24 | 0.64 | 1.99 | 0.04 | ND | 0.35 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mansour, M.M.A.; Hamed, S.A.E.-K.M.; Salem, M.Z.M.; Ali, H.M. Illustration of the Effects of Five Fungi on Acacia saligna Wood Organic Acids and Ultrastructure Alterations in Wood Cell Walls by HPLC and TEM Examinations. Appl. Sci. 2020, 10, 2886. https://doi.org/10.3390/app10082886
Mansour MMA, Hamed SAE-KM, Salem MZM, Ali HM. Illustration of the Effects of Five Fungi on Acacia saligna Wood Organic Acids and Ultrastructure Alterations in Wood Cell Walls by HPLC and TEM Examinations. Applied Sciences. 2020; 10(8):2886. https://doi.org/10.3390/app10082886
Chicago/Turabian StyleMansour, Maisa M. A., Safa Abd El-Kader Mohamed Hamed, Mohamed Z. M. Salem, and Hayssam M. Ali. 2020. "Illustration of the Effects of Five Fungi on Acacia saligna Wood Organic Acids and Ultrastructure Alterations in Wood Cell Walls by HPLC and TEM Examinations" Applied Sciences 10, no. 8: 2886. https://doi.org/10.3390/app10082886
APA StyleMansour, M. M. A., Hamed, S. A. E.-K. M., Salem, M. Z. M., & Ali, H. M. (2020). Illustration of the Effects of Five Fungi on Acacia saligna Wood Organic Acids and Ultrastructure Alterations in Wood Cell Walls by HPLC and TEM Examinations. Applied Sciences, 10(8), 2886. https://doi.org/10.3390/app10082886