Potential of Biogas Production from Processing Residues to Reduce Environmental Impacts from Cassava Starch and Crisp Production—A Case Study from Malaysia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the System under Study
2.1.1. Feedstock for the Production of Starch, Crisps and Biogas
2.1.2. Processing of Roots
2.1.3. Cassava Leaves
2.1.4. Biogas Production and Utilization
2.2. Life Cycle Inventory (LCI)
2.2.1. Goal, Scope and Functional Unit
2.2.2. System Boundaries
2.2.3. Scenarios
2.2.4. LCI Data
2.3. Life Cycle Impact Assessment (LCIA)
3. Results and Discussion
3.1. Cassava Cultivation
3.2. Cassava Processing and the Utilization of Processing Residues for Biogas Production
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- FAO. FAOSTAT Database; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019. [Google Scholar]
- Latif, S.; Müller, J. Cassava—How to explore the "all-sufficient". Rural 21 2014, 3, 2. [Google Scholar]
- Latif, S.; Müller, J. Potential of cassava leaves in human nutrition: A review. Trends Food Sci. Technol. 2015, 44, 147–158. [Google Scholar] [CrossRef]
- Vetter, J. Plant cyanogenic glycosides. Toxicon 2000, 38, 11–36. [Google Scholar] [CrossRef]
- Corona, A.; Ambye-Jensen, M.; Vega, G.C.; Hauschild, M.Z.; Birkved, M. Techno-environmental assessment of the green biorefinery concept: Combining process simulation and life cycle assessment at an early design stage. Sci. Total Environ. 2018, 635, 100–111. [Google Scholar] [CrossRef] [PubMed]
- Abdeshahian, P.; Lim, J.S.; Ho, W.S.; Hashim, H.; Lee, C.T. Potential of biogas production from farm animal waste in Malaysia. Renew. Sustain. Energy Rev. 2016, 60, 714–723. [Google Scholar] [CrossRef]
- Abdullah, W.S.W.; Osman, M.; Kadir MZ, A.A.; Verayiah, R. The Potential and Status of Renewable Energy Development in Malaysia. Energies 2019, 12, 2437. [Google Scholar] [CrossRef] [Green Version]
- Lian, T.S.; Idris, K. Present situation and future potential of cassava in Malaysia. In Proceedings of the Sixth Regional Workshop, Ho Chi Minh City, Vietnam, 21–25 February 2000. [Google Scholar]
- Tran, T.; Da, G.; Alonso, M.; Moreno-Santander, Adolfo, G.; Vélez-Hernández; Giraldo-Toro, A.; Piyachomkwan, K.; Sriroth, K.; Dufour, D. A comparison of energy use, water use and carbon footprint of cassava starch production in Thailand, Vietnam and Colombia. Resour. Conserv. Recycl. 2015, 100, 31–40. [Google Scholar] [CrossRef]
- Torquati, B.; Venanzi, S.; Ciani, A.; Diotallevi, F.; Tamburi, V.; Asdrubali, F. Environmental sustainability and economic benefits of dairy farm biogas energy production: A case study in Umbria. Sustainability 2014, 6, 6696–6713. [Google Scholar] [CrossRef] [Green Version]
- Usubharatana, P.; Phungrassami, H. Carbon footprint of cassava starch production in North-Eastern Thailand. Proced. CIRP 2015, 29, 462–467. [Google Scholar] [CrossRef]
- Hansupalak, N.; Piromkraipak, P.; Tamthirat, P.; Manitsorasak, A.; Sriroth, K.; Tran, T. Biogas reduces the carbon footprint of cassava starch: A comparative assessment with fuel oil. J. Clean. Prod. 2016, 134, 539–546. [Google Scholar] [CrossRef]
- Olaniran, J.; Jekayinfa, S.; Agbarha, H. Life cycle assessment of cassava flour production: A case study in Southwest Nigeria. J. Eng. Technol. Res. 2017, 9, 6–13. [Google Scholar] [CrossRef] [Green Version]
- United Nations (UN). Sustainable Development Goals; Sustainable Development Goals: New York, NY, USA, 2015. [Google Scholar]
- Sala, S.; Castellani, V. The consumer footprint: Monitoring sustainable development goal 12 with process-based life cycle assessment. J. Clean. Prod. 2019, 240, 118050. [Google Scholar] [CrossRef] [PubMed]
- Chavalparit, O.; Ongwandee, M. Clean technology for the tapioca starch industry in Thailand. J. Clean. Prod. 2009, 17, 105–110. [Google Scholar] [CrossRef]
- Mouron, P.; Willersinn, C.; Möbius, S.; Lansche, J. Environmental profile of the swiss supply chain for French fries: Effects of food loss reduction, loss treatments and process modifications. Sustainability 2016, 8, 1214. [Google Scholar] [CrossRef] [Green Version]
- Vitrac, O.; Dominique, D.; Trystram, G.; Raoult-Wack, A.-L. Deep-fat frying of cassava: Influence of raw material properties on chip quality. J. Sci. Food Agric. 2001, 81, 227–236. [Google Scholar] [CrossRef]
- Phairuang, W.; Hata, M.; Furuuchi, M. Influence of agricultural activities, forest fires and agro-industries on air quality in Thailand. J. Environ. Sci. 2017, 52, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Standard, V. VDI 4630 Fermentation of Organic Materials. Characterization of the Substrate, Sampling, Collection of Material Data, Fermentation Tests; Verlag des Vereins Deutscher Ingenieure: Düsseldorf, Germany, 2006; p. 92. [Google Scholar]
- Grünwasser, S. Determination of the influence of hydrocyanic acid glycosides on the biogas yield potential of cassava leaves (in German). In Institut für Agrartechnik; Universität Hohenheim: Stuttgart, Germany, 2017. [Google Scholar]
- Awiszus, S. Methane Production Potential of Cassava Bagasse; Universität Hohenheim: Stuttgart, Germany, 2019. [Google Scholar]
- ISO. ISO 14044—Environmental Management—Life Cycle Assessment—Requirements and Guidelines; ISO: Geneva, Switzerland, 2006. [Google Scholar]
- ISO. ISO 14040—Environmental Management—Life Cycle Assessment—Principles and Framework; ISO: Geneva, Switzerland, 2006. [Google Scholar]
- Ecoinvent Centre. Ecoinvent Data—The Life Cycle Inventory Data V3.3; Swiss Centre for Life Cycle Inventories: Dübendorf, Switzerland, 2016. [Google Scholar]
- Gaillard, G.; Nemecek, T. Swiss Agricultural Life Cycle Assessment (SALCA): An integrated environmental assessment concept for agriculture. In Proceedings of the Integrated Assessment of Agriculture and Sustainable Development, Setting the Agenda for Science and Policy, Egmond aan Zee, The Netherlands, 10–12 March 2009; AgSAP Office, Wageningen University: Egmond aan Zee, The Netherlands, 2009. [Google Scholar]
- Nemecek, T.; Bengoa, X.; Lansche, J.; Mouron, P.; Riedener, E.; Rossi, V.; Humbert, S. Methodological Guidelines for the Life Cycle Inventory of Agricultural Products. Version 3.0, July 2015; World Food LCA Database (WFLDB); Quantis and Agroscope: Lausanne, Switzerland, 2015; p. 84. [Google Scholar]
- Hanif, M.; Mahlia, T.M.I.; Aditiya, H.B.; Bakar, M.S.A. Energy and environmental assessments of bioethanol production from Sri Kanji 1 cassava in Malaysia. Biofuel Res. J. 2017, 4, 537–544. [Google Scholar] [CrossRef] [Green Version]
- EEA. EMEP/EEA air pollutant emission inventory guidebook 2013—Technical guidance to prepare national emission inventories. In EEA Technical Report No 12/2013; European Environment Agency: Luxembourg, 2013. [Google Scholar]
- IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4: Agriculture, Forestry and Other Land Use; Eggleston, S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; IGES: Kanagawa, Japan, 2006. [Google Scholar]
- Faist Emmenegger, M.; Reinhard, J.; Zah, R. Sustainability Quick Check for Biofuels—Intermediate Background Report; EMPA: Dübendorf, Switzerland, 2009; p. 129. [Google Scholar]
- Prasuhn, V. Erfassung der PO4-Austräge für die Ökobilanzierung—SALCA-Phosphor; Agroscope FAL Reckenholz: Zürich, Switzerland, 2006; p. 22. [Google Scholar]
- Freiermuth, R. Modell zur Berechnung der Schwermetallflüsse in der Landwirtschaftlichen Ökobilanz; Agroscope FAL Reckenholz: Zürich, Switzerland, 2006; p. 42. [Google Scholar]
- Rosenbaum, R.K.; Anton, A.; Bengoa, X.; Bjørn, A.; Brain, R.; Bulle, C.; Cosme, N.; Dijkman, T.J.; Fantke, P.; Felix, M.; et al. The Glasgow consensus on the delineation between pesticide emission inventory and impact assessment for LCA. Int. J. Life Cycle Assess. 2015, 20, 765–776. [Google Scholar] [CrossRef] [Green Version]
- Bystricky, M.; Nemecek, T. SALCA-Emissionsmodelle: Anwendung in Österreich; Abschlusstagung des Projektes FarmLife; Höhere Bundeslehr-und Forschungsanstalt Raumberg-Gumpenstein: Irdning, Austria, 2015; pp. 23–32. [Google Scholar]
- Bystricky, M.; Alig Ceesay, M.; Nemecek, T.; Gaillard, G. Ökobilanz ausgewählter Schweizer Landwirtschaftsprodukte im Vergleich zum Import. Agroscope Sci. 2014, 2, 1–177. [Google Scholar]
- Smetana, S.; Mathys, A.; Knoch, A.; Heinz, V. Meat alternatives: Life cycle assessment of most known meat substitutes. Int. J. Life Cycle Assess 2015, 20, 1254–1267. [Google Scholar] [CrossRef]
Parameter | Traditional | Modern |
---|---|---|
Plowing (number of crossings) | manual (1) | mechanized (1) |
Harrowing (number of crossings) | - | mechanized (2) |
Mulching (number of crossings) | manual (1) | mechanized (3) |
Planting, pcs/ha | 26,000 | 26,000 |
Harvesting | manual | mechanized |
Loading of crops | manual | mechanized |
Fertilizing | manual | mechanized |
Cattle manure, kg/ha | - | 15’000 |
Manure application | - | mechanized |
NPK (15/15/15), kg/ha | 350 | 350 |
Cutting stems and leaves | manual | mechanized |
Tuber yield, t/ha | 5.0 | 17.8 |
Leaves yield, t/ha | 0.6 | 2.04 |
Parameter | Unit | Value |
---|---|---|
Cassava peeling | ||
Peel, percentage of fresh roots | % | 10 |
Wastewater per ton of fresh roots | m³/t | 1.3 |
Energy demand per ton of fresh roots | MJ/t | 1.7 |
Cassava chopping | ||
Energy demand per ton of peeled roots | MJ/t | 16.67 |
Water demand per ton of peeled roots | m³/t | 0.3 |
Fiber and pulp separation | ||
Water demand per ton of chopped roots | m³/t | 1.4 |
Sulphur demand per ton of chopped roots | kg/t | 0.13 |
Waste fibers, wet per ton of chopped roots | t/t | 1.01 |
Starch extract, wet per ton of chopped roots | t/t | 0.89 |
Starch separation and dewatering | ||
Water demand per ton of starch extract | m3/t | 0.5 |
Electricity for dewatering per ton of starch extract | MJ/t | 12.5 |
Electricity, separation per ton of starch extract | MJ/t | 18 |
Starch loss per ton of starch extract | kg/t | 2.3 |
Starch per ton of starch extract | t/t | 0.18 |
Starch drying | ||
Thermal energy demand per ton of wet starch | MJ/t | 1.0 |
Starch loss per ton of dry starch | kg/t | 5.0 |
Wastewater disposal (all processing steps) Wastewater per ton of fresh roots | m3/t | 4.5 |
BOD per m3 waste water | g/m3 | 1410 |
Cyanide per m3 waste water | g/m3 | 0.17 |
Nitrate per m3 waste water | g/m3 | 470 |
Production Step | Traditional | Modern | Industrial | Advanced |
---|---|---|---|---|
Manual field-work | x | - | - | - |
Mechanized field-work | - | x | x | x |
Leaves burnt | x | x | - | - |
Leaves harvested | - | - | x | x |
Starch production | - | - | x | - |
Crisp production | - | - | - | x |
Biogas | - | - | x | x |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lansche, J.; Awiszus, S.; Latif, S.; Müller, J. Potential of Biogas Production from Processing Residues to Reduce Environmental Impacts from Cassava Starch and Crisp Production—A Case Study from Malaysia. Appl. Sci. 2020, 10, 2975. https://doi.org/10.3390/app10082975
Lansche J, Awiszus S, Latif S, Müller J. Potential of Biogas Production from Processing Residues to Reduce Environmental Impacts from Cassava Starch and Crisp Production—A Case Study from Malaysia. Applied Sciences. 2020; 10(8):2975. https://doi.org/10.3390/app10082975
Chicago/Turabian StyleLansche, Jens, Sebastian Awiszus, Sajid Latif, and Joachim Müller. 2020. "Potential of Biogas Production from Processing Residues to Reduce Environmental Impacts from Cassava Starch and Crisp Production—A Case Study from Malaysia" Applied Sciences 10, no. 8: 2975. https://doi.org/10.3390/app10082975
APA StyleLansche, J., Awiszus, S., Latif, S., & Müller, J. (2020). Potential of Biogas Production from Processing Residues to Reduce Environmental Impacts from Cassava Starch and Crisp Production—A Case Study from Malaysia. Applied Sciences, 10(8), 2975. https://doi.org/10.3390/app10082975