Radial Structure of OAM-Carrying Fundamental X-Waves
Abstract
:1. Introduction
2. Results
2.1. Localized Waves
2.2. Fundamental X Waves with OAM
3. Discussion
4. Materials and Methods
Number of Rings of Localized Waves
- Not all the zeros of Equation (11) will contribute to the final number of rings. In fact, this depends on how fast the intensity distribution decays radially. If decays too quickly, only the zeros of Equation (11) that find themselves in a small region close to the center of the wave will participate in determining its radial structure.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
OAM | Orbital Angular Momentum |
FWHM | Full Width at Half Maximum |
LG | Laguerre–Gaussian |
References
- Maiman, T.H. Stimulated Optical Radiation in Ruby. Nature 1960, 187, 493–494. [Google Scholar] [CrossRef]
- Meier, M.; Romano, V.; Feurer, T. Material processing with pulsed radially and azimuthally polarized laser radiation. Appl. Phys. A 2007, 86, 329–334. [Google Scholar] [CrossRef] [Green Version]
- Sick, B.; Hecht, B.; Novotny, L. Orientational Imaging of Single Molecules by Annular Illumination. Phys. Rev. Lett. 2000, 85, 4482–4485. [Google Scholar] [CrossRef] [Green Version]
- Huse, N.; Schoenle, A.; Hell, S.W. Z-polarized confocal microscopy. J. Biomed. Opt. 2001, 6, 273–276. [Google Scholar] [CrossRef]
- Agrawal, G.P. Fiber-Optic Communication Systems; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2011. [Google Scholar]
- Forbes, A.; Nape, I. Quantum mechanics with patterns of light: Progress in high dimensional and multidimensional entanglement with structured light. AVS Quantum Sci. 2019, 1, 011701. [Google Scholar] [CrossRef]
- Weiner, A. Ultrafast Optics, 1st ed.; Wiley Series in Pure and Applied Optics; Wiley: Hoboken, NJ, USA, 2009. [Google Scholar]
- Kärtner, F.X. Few-Cycle Laser Pulse Generation and Its Applications, 1st ed.; Topics in Applied Physics 95; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Willner, A.E.; Huang, H.; Yan, Y.; Ren, Y.; Ahmed, N.; Xie, G.; Bao, C.; Li, L.; Cao, Y.; Zhao, Z.; et al. Optical communications using orbital angular momentum beams. Adv. Opt. Photon. 2015, 7, 66–106. [Google Scholar] [CrossRef] [Green Version]
- Ornigotti, M.; Conti, C.; Szameit, A. Effect of Orbital Angular Momentum on Nondiffracting Ultrashort Optical Pulses. Phys. Rev. Lett. 2015, 115, 100401. [Google Scholar] [CrossRef]
- Erhard, M.; Fickler, R.; Krenn, M.; Zeilinger, A. Twisted photons: New quantum perspectives in high dimensions. Light. Sci. Appl. 2018, 7, 17146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cerf, N.J.; Bourennane, M.; Karlsson, A.; Gisin, N. Security of Quantum Key Distribution Using d-Level Systems. Phys. Rev. Lett. 2002, 88, 127902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ecker, S.; Bouchard, F.; Bulla, L.; Brandt, F.; Kohout, O.; Steinlechner, F.; Fickler, R.; Malik, M.; Guryanova, Y.; Huber, M.; et al. Overcoming Noise in Entanglement Distribution. Phys. Rev. X 2019, 9, 041042. [Google Scholar] [CrossRef] [Green Version]
- Rubinsztein-Dunlop, H.; Forbes, A.; Berry, M.V.; Dennis, M.R.; Andrews, D.L.; Mansuripur, M.; Denz, C.; Alpmann, C.; Banzer, P.; Bauer, T.; et al. Roadmap on structured light. J. Opt. 2016, 19, 013001. [Google Scholar] [CrossRef]
- Bhaduri, B.; Yessenov, M.; Abouraddy, A.F. Space-time wave packets that travel in optical materials at the speed of light in vacuum. Optica 2019, 6, 139–146. [Google Scholar] [CrossRef]
- Kondakci, H.E.; Abouraddy, A.F. Optical space-time wave packets having arbitrary group velocities in free space. Nat. Commun. 2019, 10, 929. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Figueroa, H.E.; Michel Zamboni-Rached, E.R. Localized Waves, 1st ed.; Wiley Series in Microwave and Optical Engineering; Wiley: Hoboken, NJ, USA, 2008. [Google Scholar]
- Lu, J.; Greenleaf, J.F. Nondiffracting X waves-exact solutions to free-space scalar wave equation and their finite aperture realizations. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 1992, 39, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Greenleaf, J.F. Experimental verification of nondiffracting X waves. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 1992, 39, 441–446. [Google Scholar] [CrossRef]
- Valiulis, G.; Kilius, J.; Jedrkiewicz, O.; Bramati, A.; Minardi, S.; Conti, C.; Trillo, S.; Piskarskas, A.; Di Trapani, P. Space-time nonlinear compression and three-dimensional complex trapping in normal dispersion. In Proceedings of the Technical Digest, Summaries of papers presented at the Quantum Electronics and Laser Science Conference, Postconference Technical Digest (IEEE Cat. No.01CH37172), Baltimore, MD, USA, 11 May 2001; p. QPD10. [Google Scholar]
- Conti, C.; Trillo, S. Nonspreading Wave Packets in Three Dimensions Formed by an Ultracold Bose Gas in an Optical Lattice. Phys. Rev. Lett. 2004, 92, 120404. [Google Scholar] [CrossRef] [Green Version]
- Ciattoni, A.; Conti, C. Quantum electromagnetic X waves. J. Opt. Soc. Am. B 2007, 24, 2195–2198. [Google Scholar] [CrossRef] [Green Version]
- Ornigotti, M.; Villari, L.D.M.; Szameit, A.; Conti, C. Squeezing of X waves with orbital angular momentum. Phys. Rev. A 2017, 95, 011802. [Google Scholar] [CrossRef] [Green Version]
- Ornigotti, M.; Conti, C.; Szameit, A. Quantum X waves with orbital angular momentum in nonlinear dispersive media. J. Opt. 2018, 20, 065201. [Google Scholar] [CrossRef] [Green Version]
- Lahini, Y.; Frumker, E.; Silberberg, Y.; Droulias, S.; Hizanidis, K.; Morandotti, R.; Christodoulides, D.N. Discrete X-Wave Formation in Nonlinear Waveguide Arrays. Phys. Rev. Lett. 2007, 98, 023901. [Google Scholar] [CrossRef]
- Heinrich, M.; Szameit, A.; Dreisow, F.; Keil, R.; Minardi, S.; Pertsch, T.; Nolte, S.; Tünnermann, A.; Lederer, F. Observation of Three-Dimensional Discrete-Continuous X Waves in Photonic Lattices. Phys. Rev. Lett. 2009, 103, 113903. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.Y.; He, S. Optical X wave communications. Opt. Commun. 1999, 161, 187–192. [Google Scholar] [CrossRef]
- Ornigotti, M.; Conti, C.; Szameit, A. Universal form of the carrier frequency of scalar and vector paraxial X waves with orbital angular momentum and arbitrary frequency spectrum. Phys. Rev. A 2015, 92, 043801. [Google Scholar] [CrossRef]
- Ornigotti, M.; Conti, C.; Szameit, A. Cylindrically polarized nondiffracting optical pulses. J. Opt. 2016, 18, 075605. [Google Scholar] [CrossRef] [Green Version]
- Ornigotti, M.; Aiello, A. Generalized Bessel beams with two indices. Opt. Lett. 2014, 39, 5618–5621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durnin, J.; Miceli, J.J.; Eberly, J.H. Diffraction-free beams. Phys. Rev. Lett. 1987, 58, 1499–1501. [Google Scholar] [CrossRef]
- Olver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. NIST Handbook of Mathematical Functions, 1st ed.; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Porras, M.A.; Valiulis, G.; Trapani, P.D. Unified description of Bessel X waves with cone dispersion and tilted pulses. Phys. Rev. E 2003, 68, 016613. [Google Scholar] [CrossRef]
- Saari, P.; Sonajalg, H. Pulsed bessel beams. Laser Phys. 1997, 7, 32. [Google Scholar]
- Gradshteyn, I.; Ryzhik, I. Table of Integrals, Series, and Products, 7th ed.; Academic Press: Cambridge, MA, USA, 2007. [Google Scholar]
- Schébelin, C.; Azaña, J.; de Chatellus, H.G. Programmable broadband optical field spectral shaping with megahertz resolution using a simple frequency shifting loop. Nat. Commun. 2019, 10, 4654. [Google Scholar] [CrossRef] [Green Version]
- Vetter, C.; Steinkopf, R.; Bergner, K.; Ornigotti, M.; Nolte, S.; Gross, H.; Szameit, A. Realization of Free-Space Long-Distance Self-Healing Bessel Beams. Laser Photonics Rev. 2019, 13, 1900103. [Google Scholar] [CrossRef]
- Ruano, P.N.; Robson, C.W.; Ornigotti, M. Localized waves carrying orbital angular momentum in optical fibers. arXiv 2020, arXiv:2012.03609. [Google Scholar]
- Hiekkamäki, M.; Prabhakar, S.; Fickler, R. Near-perfect measuring of full-field transverse-spatial modes of light. Opt. Express 2019, 27, 31456–31464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrews, D.L.; Babiker, M. The Angular Momentum of Light; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agasti, S.; Ornigotti, M. Radial Structure of OAM-Carrying Fundamental X-Waves. Appl. Sci. 2021, 11, 169. https://doi.org/10.3390/app11010169
Agasti S, Ornigotti M. Radial Structure of OAM-Carrying Fundamental X-Waves. Applied Sciences. 2021; 11(1):169. https://doi.org/10.3390/app11010169
Chicago/Turabian StyleAgasti, Souvik, and Marco Ornigotti. 2021. "Radial Structure of OAM-Carrying Fundamental X-Waves" Applied Sciences 11, no. 1: 169. https://doi.org/10.3390/app11010169
APA StyleAgasti, S., & Ornigotti, M. (2021). Radial Structure of OAM-Carrying Fundamental X-Waves. Applied Sciences, 11(1), 169. https://doi.org/10.3390/app11010169