Lightning Protection of Photovoltaic Systems: Computation of the Developed Potentials
Abstract
:1. Introduction
2. Protection of PV Systems against Lightning Overvoltages
3. System Configuration
4. Simulation Results
5. Discussion
- The installation of a perimeter grounding grid can significantly decrease the developed touch voltages (Figure 7). An installed perimeter grounding grid increases the grounding area and leads to a lower grounding resistance value and, consequently to diminished developed touch voltages.
- The lowest values of the developed potential are achieved in the case of non-attached LPS system with conductive isolator (Figure 8). This result contributes to the design of grounding systems, as the reduction of hazardous overvoltages is a significant criterion for the selection of a lightning protection system.
- The installation of rods on the perimeter grounding can contribute to decreasing the developed potential (Figure 9) considering the soil structure. In case the soil resistivity of the upper layer is higher, compared to the bottom layers, the installed rods’ length should be such that part of them is buried beyond the upper layer boundaries. On the contrary, in case of a lower soil resistivity value of the upper layer, a horizontal grounding area increase would restrict the developed overvoltages rather than buried electrodes.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kyritsis, A.; Voglitsis, D.; Papanikolaou, N.; Tselepis, S.; Christodoulou, C.; Gonos, I.; Kalogirou, S.A. Evolution of PV systems in Greece and review of applicable solutions for higher penetration levels. Renew. Energy 2017, 109, 487–499. [Google Scholar] [CrossRef]
- Tigas, K.; Giannakidis, G.; Mantzaris, J.; Lalas, D.; Sakellaridis, N.; Nakos, C.; Vougiouklakis, Y.; Theofilidi, M.; Pyrgioti, E.; Alexandridis, A.T. Wide scale penetration of renewable electricity in the Greek energy system in view of the European decarbonization targets for 2050. Renew. Sustain. Energy Rev. 2015, 42, 158–169. [Google Scholar] [CrossRef]
- Bilgili, M.; Ozbek, A.; Sahin, B.; Kahraman, A. An overview of renewable electric power capacity and progress in new technologies in the world. Renew. Sustain. Energy Rev. 2015, 49, 323–334. [Google Scholar] [CrossRef]
- Naxakis, I.; Pyrgioti, E.; Perraki, V.; Tselepis, E. Studying the effect of the impulse voltage application on sc-Si PV modules. Sol. Energy 2017, 144, 721–728. [Google Scholar] [CrossRef]
- Charalambous, C.; Kokkinos, N.; Christofides, N. External Lightning Protection and Grounding in Large-Scale Photovoltaic Applications. IEEE Trans. EMC 2014, 56, 427–434. [Google Scholar] [CrossRef]
- Ahmada, N.I.; Ab-Kadira, M.Z.A.; Izadia, M.; Azisa, N.; Radzib, M.A.M.; Zainia, N.H.; Nasira, M.S.M. Lightning protection on photovoltaic systems: A review on current and recommended practices. Renew. Sustain. Energy Rev. 2018, 82, 1611–1619. [Google Scholar] [CrossRef]
- Vita, V.; Ekonomou, L.; Christodoulou, C.A. The impact of distributed generation to the lightning protection of modern distribution lines. Energy Syst. 2016, 7, 357–364. [Google Scholar] [CrossRef]
- Vita, V.; Maris, T.I. Sensitivity analyses of parameters that affect the lightning performance of distribution networks with distributed generation. J. Multidiscip. Eng. Sci. Stud. 2016, 2, 774–781. [Google Scholar]
- Li, Z.; Lu, J.; Zhu, Y.; Jiang, W. Ground-Fault Characteristic Analysis of Grid-Connected Photovoltaic Stations with Neutral Grounding Resistance. Energies 2017, 10, 1910. [Google Scholar] [CrossRef] [Green Version]
- Kern, A.; Krichel, F. Considerations about the lightning protection system of mains independent renewable energy hybrid-systems–practical experiences. J. Electrostat. 2004, 60, 257–263. [Google Scholar] [CrossRef]
- Zaini, N.H.; Ab-Kadir, M.Z.A.; Izadi, M.; Ahmad, N.I.; Radzi, M.A.M.; Azis, N.; Hasan, W.Z.W. On the effect of lightning on a solar photovoltaic system. In Proceedings of the 2016 33rd International Conference on Lightning Protection (ICLP), Estoril, Lisboa, Portugal, 25–30 September 2016. [Google Scholar]
- Fallah, S.N.; Gomes, C.; Mehdi, I.; Ab Kadir, M.Z.A.; Rebaz, J.; Ahmed, J.J. Minimum Separation Between Lightning Protection System And Non-Integrated Metallic Structures. In Proceedings of the 2018 34th International Conference on Lightning Protection (ICLP), Rzeszow, Poland, 2–7 September 2018. [Google Scholar]
- Zaini, N.H.; Ab-Kadir, M.Z.A.; Radzi, M.A.M.; Azis, N.; Ahmad, N.I.; Nasir, M.S.M.; Izadi, M.; Ab Aziz, N.F.; Ali, Z. Lightning Surge on the DC and AC Side of Solar PV System. In Proceedings of the 2019 11th Asia-Pacific International Conference on Lightning (APL), Hong Kong, China, 12–14 June 2019. [Google Scholar]
- Ittarat, S.; Hiranvarodom, S.; Plangklang, B. A computer program for evaluating the risk of lightning impact and for designing the installation of lightning rod protection for photovoltaic system. Energy Procedia. In Proceedings of the 10th Eco-energy and Materials Science and Engineering Symposium, Ubon-ratchathani, Thailand, 5–8 December 2012; Volume 34, pp. 318–325. [Google Scholar]
- Enrique, E.H.; Walsh, J.D. Analysis of Touch Potentials in Solar Farms. IEEE Trans. Ind. Appl. 2015, 51, 4291–4296. [Google Scholar] [CrossRef]
- Mohamed, F.P.; Siew, W.H.; Mahmud, S. Effect of group grounding on the potential rise across solar PV panels during lightning strike. In Proceedings of the 2019 11th Asia-Pacific International Conference on Lightning (APL), Hong Kong, China, 12–14 June 2019; pp. 1–5. [Google Scholar]
- Zhang, Y.; Chao, Q.; Wang, H.; Li, Y.; Wang, Y. Grounding distance protection based on adaptive branch coefficient for grid-connected PV power station. Dianli Zidonghua Shebei/Electr. Power Autom. Equip. 2015, 35, 113–117. [Google Scholar]
- Cheng, L.; Wang, S.; Li, Z.; Wang, J.; Zhang, B.; Shi, W. Design of grounding system for wind-photovoltaic-energy storage Hybrid power station. In Proceedings of the ICHVE 2014—2014 International Conference on High Voltage Engineering and Application, Poznan, Poland, 8–11 September 2014. [Google Scholar]
- Hernández, J.; Vidal, P.; Francisco, J. Lightning and surge protection in photovoltaic installations. IEEE Trans. PWRD 2008, 23, 1961–1971. [Google Scholar] [CrossRef]
- Lee, C.-U.; Kim, J.-C. An analysis and comparison of safety voltage (step voltage and touch voltage) according to isolation and common grounding system of large-scale photovoltaic power plant. Trans. Korean Inst. Electr. Eng. 2019, 68, 1458–1464. [Google Scholar] [CrossRef]
- IEC Std. 62305-1: Protection Against Lightning—Part 1: General Principles. Available online: https://webstore.iec.ch/publication/6793 (accessed on 30 December 2020).
- IEC Std. 62305-2: Protection Against Lightning—Part 2: Risk Management. Available online: https://webstore.iec.ch/publication/6794 (accessed on 29 December 2020).
- IEC Std. 62305-3: Protection Against Lightning—Part 3: Physical Damage to Structures and Life Hazard. Available online: https://webstore.iec.ch/publication/6795 (accessed on 29 December 2020).
- Youping, T.; Zhang, C.; Jun, H.; Wang, S.; Sun, W.; Lin, H. Research on lightning overvoltages of solar arrays in a rooftop photovoltaic power system. Electr. Power Syst. Res. 2013, 94, 10–15. [Google Scholar]
- Christodoulou, C.A.; Damianaki, K.D.; Kontargyri, V.T.; Gonos, I.F.; Kyritsis, A.C.; Papanikolaou, N.P. Protection of 100kWp photovoltaic system against atmospheric overvoltages: A case study. In Proceedings of the 2016 IEEE International Conference on High-Voltage Engineering and Application (ICHVE 2016), Paper P-1-27, Chengdu, China, 19–22 September 2016. [Google Scholar]
- Christodoulou, C.A.; Ekonomou, L.; Gonos, I.F.; Papanikolaou, N.P. Lightning protection of PV systems. Energy Syst. 2016, 7, 369–382. [Google Scholar] [CrossRef]
- Christodoulou, C.A.; Kontargyri, V.T.; Damianaki, K.D.; Kyritsis, A.C.; Gonos, I.F.; Papanikolaou, N.P. Lightning Performance Study for Photovoltaic Systems. In Proceedings of the 19th International Symposium on High-Voltage Engineering (ISH 2015), Paper 365, Pilsen, Czech Republic, 23–28 August 2015. [Google Scholar]
- HIFREQ and FFTSES User’s Manuals; Safe Engineering Services & Technologies Ltd.: Montreal, QC, Canada, 2012.
Soil Structures | ρ1 [Ωm] | h1 [m] | ρ2 [Ωm] | R [Ω] |
---|---|---|---|---|
A | 100 | 2 | 1000 | 12.66 |
B | 100 | 3 | 1000 | 10.60 |
C | 1000 | 2 | 100 | 18.13 |
D | 1000 | 3 | 100 | 21.21 |
Grounding System | Depth of Rod A [m] | Depth of Rods B [m] | Depth of Rods C [m] |
---|---|---|---|
gs1 | 1 | 1.5 | - |
gs2 | 3.2 | 1.5 | - |
gs3 | 4 | 1.5 | - |
gs4 | 5 | 1.5 | - |
gs5 | 3.2 | 3.2 | - |
gs6 | 4 | 1.5 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Damianaki, K.; Christodoulou, C.A.; Kokalis, C.-C.A.; Kyritsis, A.; Ellinas, E.D.; Vita, V.; Gonos, I.F. Lightning Protection of Photovoltaic Systems: Computation of the Developed Potentials. Appl. Sci. 2021, 11, 337. https://doi.org/10.3390/app11010337
Damianaki K, Christodoulou CA, Kokalis C-CA, Kyritsis A, Ellinas ED, Vita V, Gonos IF. Lightning Protection of Photovoltaic Systems: Computation of the Developed Potentials. Applied Sciences. 2021; 11(1):337. https://doi.org/10.3390/app11010337
Chicago/Turabian StyleDamianaki, Katerina, Christos A. Christodoulou, Christos-Christodoulos A. Kokalis, Anastasios Kyritsis, Emmanouil D. Ellinas, Vasiliki Vita, and Ioannis F. Gonos. 2021. "Lightning Protection of Photovoltaic Systems: Computation of the Developed Potentials" Applied Sciences 11, no. 1: 337. https://doi.org/10.3390/app11010337
APA StyleDamianaki, K., Christodoulou, C. A., Kokalis, C.-C. A., Kyritsis, A., Ellinas, E. D., Vita, V., & Gonos, I. F. (2021). Lightning Protection of Photovoltaic Systems: Computation of the Developed Potentials. Applied Sciences, 11(1), 337. https://doi.org/10.3390/app11010337