Fleet Resilience: Evaluating Maintenance Strategies in Critical Equipment
Abstract
:1. Introduction
Fleet Resilience
2. Resilience Metrics
Resilience and Maintenance
3. Proposed Methodology
- Selection of the resilience metric. Implementation of the model using MATLAB software.
- Modeling of the production system through reliability blocks diagrams (RBD) using R-MES software.
- Obtaining the availability of the system using real data and reliability, availability and maintainability (RAM) analysis.
- Simulation of different maintenance strategies and the insertion of additional equipment (Monte Carlo experiments).
- Calculating and comparing resiliencies for each simulated scenario.
4. Case Study
4.1. System-Level Resilience
4.2. Simulation and Sensitivity Studies
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hutchison, D.; Sterbenz, J.P.G. Architecture and design for resilient networked systems. Comput. Commun. 2018. [Google Scholar] [CrossRef]
- Xueyi, L.; Jinjun, Z.; Huai, S.; Zio, E. Resilience Assessment of China’s Natural Gas Supply System Based on Ecological Network Analysis. In Proceedings of the 2019 4th International Conference on System Reliability and Safety, ICSRS 2019, Rome, Italy, 20–22 November 2019. [Google Scholar] [CrossRef]
- Mousavizadeh, S.; Bolandi, T.G.; Haghifam, M.R.; Moghimi, M.; Lu, J. Resiliency analysis of electric distribution networks: A new approach based on modularity concept. Int. J. Electr. Power Energy Syst. 2020. [Google Scholar] [CrossRef]
- Huizar, L.H.; Lansey, K.E.; Arnold, R.G. Sustainability, robustness, and resilience metrics for water and other infrastructure systems. Sustain. Resilient Infrastruct. 2018. [Google Scholar] [CrossRef]
- Feng, Q.; Zhao, X.; Fan, D.; Cai, B.; Liu, Y.; Ren, Y. Resilience design method based on meta-structure: A case study of offshore wind farm. Reliab. Eng. Syst. Saf. 2019. [Google Scholar] [CrossRef]
- Sterbenz, J.P.G.; Hutchison, D.; Çetinkaya, E.K.; Jabbar, A.; Rohrer, J.P.; Schöller, M.; Smith, P. Resilience and survivability in communication networks: Strategies, principles, and survey of disciplines. Comput. Netw. 2010. [Google Scholar] [CrossRef]
- Sterbenz, J.P.G.; Hutchison, D.; Çetinkaya, E.K.; Jabbar, A.; Rohrer, J.P.; Schöller, M.; Smith, P. Redundancy, diversity, and connectivity to achieve multilevel network resilience, survivability, and disruption tolerance. Telecommun. Syst. 2014. [Google Scholar] [CrossRef]
- ASME-ITI. All Hazards Risk and Resilience–Prioritizing Critical Infrastructure Using the RAMCAP Plus SM Approach; ASME Innovative Technology Institute: Washington, DC, USA, 2009. [Google Scholar]
- Linkov, I.; Eisenberg, D.A.; Plourde, K.; Seager, T.P.; Allen, J.; Kott, A. Resilience metrics for cyber systems. Environ. Syst. Decis. 2013. [Google Scholar] [CrossRef]
- Hashimoto, T.; Stedinger, J.R.; Loucks, D.P. Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation. Water Resour. Res. 1982. [Google Scholar] [CrossRef] [Green Version]
- Ji, C.; Wei, Y.; Poor, H.V. Resilience of Energy Infrastructure and Services: Modeling, Data Analytics, and Metrics. Proc. IEEE 2017. [Google Scholar] [CrossRef]
- Cai, B.; Xie, M.; Liu, Y.; Liu, Y.; Feng, Q. Availability-based engineering resilience metric and its corresponding evaluation methodology. Reliab. Eng. Syst. Saf. 2018. [Google Scholar] [CrossRef]
- Albasrawi, M.N.; Jarus, N.; Joshi, K.A.; Sarvestani, S.S. Analysis of reliability and resilience for smart grids. In Proceedings of the Proceedings—International Computer Software and Applications Conference, Vasteras, Sweden, 21–25 July 2014. [Google Scholar] [CrossRef]
- Cholda, P.; Tapolcai, J.; Cinkler, T.; Wajda, K.; Jajszczyk, A. Quality of resilience as a network reliability characterization tool. IEEE Netw. 2009. [Google Scholar] [CrossRef]
- Bruneau, M.; Chang, S.E.; Eguchi, R.T.; Lee, G.C.; Rourke, D.O.; Reinhorn, A.M.; Shinozuka, M.; Tierney, K.; Wallace, W.A.; Winterfeldt, D.V.O.N. 13 th World Conference on Earthquake Engineering A framework to quantitatively assess and enhance the seismic resilience of communities. Nat. Hazards 2004. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Bocchini, P.; Davison, B.D. Resilience metrics and measurement methods for transportation infrastructure: The state of the art. Sustain. Resilient Infrastruct. 2020. [Google Scholar] [CrossRef]
- Li, J.; Zhou, Y. Optimizing risk mitigation investment strategies for improving post-earthquake road network resilience. Int. J. Transp. Sci. Technol. 2020. [Google Scholar] [CrossRef]
- Wang, J. Resilience thinking’in transport planning. Civ. Eng. Environ. Syst. 2015, 32, 180–191. [Google Scholar] [CrossRef]
- Żurek, J.; Małachowski, J.; Ziółkowski, J.; Szkutnik-Rogoż, J. Reliability Analysis of Technical Means of Transport. Appl. Sci. 2020, 10, 3016. [Google Scholar] [CrossRef]
- Burt, C.N.; Caccetta, L. Equipment selection for surface mining: A review. Interfaces 2014. [Google Scholar] [CrossRef] [Green Version]
- Topal, E.; Ramazan, S. A new MIP model for mine equipment scheduling by minimizing maintenance cost. Eur. J. Oper. Res. 2010. [Google Scholar] [CrossRef]
- Chaowasakoo, P.; Seppälä, H.; Koivo, H. Age-based maintenance for a fleet of haul trucks. J. Qual. Maint. Eng. 2018. [Google Scholar] [CrossRef]
- Chaowasakoo, P.; Seppälä, H.; Koivo, H.; Zhou, Q. Improving fleet management in mines: The benefit of heterogeneous match factor. Eur. J. Oper. Res. 2017. [Google Scholar] [CrossRef]
- Yanagi, S. An iteration method for reliability evaluation of a fleet System. J. Oper. Res. Soc. 1993, 43, 885–896. [Google Scholar] [CrossRef]
- Alarie, S.; Gamache, M. Overview of solution strategies used in truck dispatching systems for open pit mines. Int. J. Surf. Min. Reclam. Environ. 2002. [Google Scholar] [CrossRef]
- Cao, M. Transportation Resilience: A summative review on Definition and Connotation. Adv. Intell. Syst. Res. 2015. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Miller-Hooks, E.; Denny, K. Assessing the role of network topology in transportation network resilience. J. Transp. Geogr. 2015. [Google Scholar] [CrossRef] [Green Version]
- Wan, C.; Yang, Z.; Zhang, D.; Yan, X.; Fan, S. Resilience in transportation systems: A systematic review and future directions. Transp. Rev. 2018, 38, 479–498. [Google Scholar] [CrossRef]
- Adjetey-Bahun, K.; Birregah, B.; Châtelet, E.; Planchet, J.L. A model to quantify the resilience of mass railway transportation systems. Reliab. Eng. Syst. Saf. 2016. [Google Scholar] [CrossRef]
- Miller-Hooks, E.; Zhang, X.; Faturechi, R. Measuring and maximizing resilience of freight transportation networks. Comput. Oper. Res. 2012. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, J.; Yang, H. Resilience of Transportation Systems: Concepts and Comprehensive Review. IEEE Trans. Intell. Transp. Syst. 2019. [Google Scholar] [CrossRef]
- Yodo, N.; Wang, P. Engineering resilience quantification and system design implications: A literature survey. J. Mech. Des. Trans. ASME 2016. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, M.; Alkhraibat, A. Resiliency Assessment of Microgrid Systems. Appl. Sci. 2020, 10, 1824. [Google Scholar] [CrossRef] [Green Version]
- Attoh-Okine, N.O.; Cooper, A.T.; Mensah, S.A. Formulation of resilience index of urban infrastructure using belief functions. IEEE Syst. J. 2009. [Google Scholar] [CrossRef]
- Hu, Z.; Mahadevan, S. Resilience assessment based on time-dependent system reliability analysis. J. Mech. Des. Trans. ASME 2016. [Google Scholar] [CrossRef]
- Zhuang, B.; Lansey, K.; Kang, D. Resilience/availability analysis of municipal water distribution system incorporating adaptive pump operation. J. Hydraul. Eng. 2013. [Google Scholar] [CrossRef]
- Hosseini, S.; Barker, K.; Ramirez-Marquez, J.E. A review of definitions and measures of system resilience. Reliab. Eng. Syst. Saf. 2016. [Google Scholar] [CrossRef]
- Bishop, M.; Carvalho, M.; Ford, R.; Mayron, L.M. Resilience is more than availability. In Proceedings of the Proceedings New Security Paradigms Workshop, New York, NY, USA, 12 September 2011. [Google Scholar] [CrossRef] [Green Version]
- ISO 14224:2006. Petroleum, Petrochemical and Natural Gas Industries—Collection and Exchange of Reliability and Maintenance Data for Equipment; International Organization for Standardization: London, UK, 2006. [Google Scholar]
- Russell, H.R. Methodology for Quantifying Resiliency of Transportation Systems; Embry-Riddle Aeronautical University: Prescott, FL, USA, 2020. [Google Scholar]
- Stapelberg, R.F. Handbook of Reliability, Availability, Maintainability and Safety in Engineering Design; Springer: London, UK, 2009. [Google Scholar]
- Bourouni, K. Availability assessment of a reverse osmosis plant: Comparison between Reliability Block Diagram and Fault Tree Analysis Methods. Desalination 2013. [Google Scholar] [CrossRef]
- Safder, U.; Ifaei, P.; Nam, K.; Rashidi, J.; Yoo, C. Availability and reliability analysis of integrated reverse osmosis—Forward osmosis desalination network. Desalin. Water Treat. 2018, 109, 1–7. [Google Scholar] [CrossRef]
- Roda, I.; Garetti, M.; Arata, A.; Heidke, E. Model-based evaluation of asset operational availability. In Proceedings of the Summer School Francesco Turco, Senigallia, Italy, 11–13 September 2013. [Google Scholar]
Configuration | Equation |
---|---|
Series | |
Parallel | |
Partial Redundancy |
Equipment | MTBF(h) | MTTR(h) | Equipment | MTBF(h) | MTTR(h) | Equipment | MTBF(h) | MTTR(h) |
---|---|---|---|---|---|---|---|---|
D08 | 17.84 | 11.46 | H40 | 23.06 | 2.27 | H57 | 98.30 | 1.11 |
D09 | 161.60 | 2.28 | H41 | 29.09 | 1.69 | H58 | 75.47 | 1.03 |
D06 | 3.06 | 7.55 | H42 | 20.62 | 1.27 | H59 | 68.43 | 1.88 |
D07 | 3.10 | 9.46 | H43 | 22.88 | 3.83 | H60 | 50.00 | 1.19 |
D05 | 4.71 | 7.15 | H44 | 23.18 | 1.70 | H61 | 117.20 | 1.78 |
S04 | 9.94 | 1.61 | H45 | 26.01 | 1.48 | H62 | 110.13 | 1.04 |
S03 | 7.48 | 1.25 | H46 | 28.10 | 2.54 | H63 | 176.80 | 3.86 |
S02 | 7.75 | 1.66 | H47 | 25.82 | 2.26 | H64 | 251.67 | 1.30 |
H31 | 19.76 | 3.26 | H49 | 23.77 | 1.40 | H23 | 12.68 | 2.07 |
H32 | 20.75 | 2.63 | H48 | 27.81 | 1.86 | H24 | 12.45 | 2.03 |
H33 | 15.74 | 2.38 | H50 | 20.85 | 1.53 | H25 | 10.31 | 4.93 |
H34 | 20.20 | 3.42 | H51 | 33.66 | 1.48 | H26 | 15.14 | 4.93 |
H35 | 16.44 | 1.88 | H52 | 33.02 | 1.65 | H27 | 14.78 | 3.28 |
H36 | 26.00 | 1.70 | H53 | 28.21 | 1.26 | H28 | 14.20 | 3.28 |
H37 | 16.90 | 1.98 | H54 | 35.45 | 0.87 | H02 | 19.19 | 2.77 |
H38 | 22.43 | 2.14 | H55 | 56.47 | 2.05 | H04 | 17.55 | 2.73 |
H39 | 26.86 | 2.47 | H56 | 71.11 | 2.60 | H08 | 19.22 | 2.77 |
3 Months | 6 Months | 9 Months | Average | |
---|---|---|---|---|
D07 | 73% | 72% | 75% | 74% |
D05 | 75% | 73% | 76% | 74% |
D08 | 74% | 75% | 75% | 75% |
H25 | 77% | 73% | 75% | 75% |
S02 | 73% | 75% | 76% | 75% |
H34 | 75% | 76% | 75% | 75% |
H43 | 73% | 72% | 76% | 74% |
H31 | 70% | 72% | 70% | 71% |
H04 | 75% | 72% | 70% | 72% |
Ave. | 74% | 73% | 74% | 74% |
3 Months | 6 Months | 9 Months | Average | |
---|---|---|---|---|
D07 | 72% | 73% | 74% | 73% |
D05 | 73% | 74% | 74% | 74% |
D08 | 75% | 75% | 73% | 74% |
H25 | 75% | 74% | 73% | 74% |
S02 | 73% | 74% | 75% | 74% |
H34 | 73% | 74% | 74% | 74% |
H43 | 74% | 73% | 75% | 74% |
H31 | 75% | 73% | 72% | 73% |
H04 | 73% | 72% | 72% | 72% |
Ave. | 74% | 74% | 74% | 74% |
3 Months | 6 Months | 9 Months | Average | |
---|---|---|---|---|
D07 | 73% | 72% | 76% | 74% |
D05 | 74% | 71% | 77% | 74% |
D08 | 74% | 73% | 75% | 74% |
H25 | 73% | 72% | 75% | 74% |
S02 | 76% | 75% | 77% | 76% |
H34 | 71% | 73% | 71% | 71% |
H43 | 76% | 75% | 73% | 75% |
H31 | 75% | 73% | 74% | 74% |
H04 | 74% | 75% | 73% | 74% |
Ave. | 74% | 73% | 74% | 74% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durán, O.; Aguilar, J.; Capaldo, A.; Arata, A. Fleet Resilience: Evaluating Maintenance Strategies in Critical Equipment. Appl. Sci. 2021, 11, 38. https://doi.org/10.3390/app11010038
Durán O, Aguilar J, Capaldo A, Arata A. Fleet Resilience: Evaluating Maintenance Strategies in Critical Equipment. Applied Sciences. 2021; 11(1):38. https://doi.org/10.3390/app11010038
Chicago/Turabian StyleDurán, Orlando, Javier Aguilar, Andrea Capaldo, and Adolfo Arata. 2021. "Fleet Resilience: Evaluating Maintenance Strategies in Critical Equipment" Applied Sciences 11, no. 1: 38. https://doi.org/10.3390/app11010038
APA StyleDurán, O., Aguilar, J., Capaldo, A., & Arata, A. (2021). Fleet Resilience: Evaluating Maintenance Strategies in Critical Equipment. Applied Sciences, 11(1), 38. https://doi.org/10.3390/app11010038