Adjustment of an Integrated Geodetic Network Composed of GNSS Vectors and Classical Terrestrial Linear Pseudo-Observations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Creating Linear Pseudo-Observations from the Classical Terrestrial Measurements
2.2. Stochastic Adjustment Model
2.3. Functional Adjustment Model
- —the absolute term in the correction Equation (12);
- —the approximate distance;
- —partial derivatives;
- —the absolute term in the correction Equation (15);
- —the approximate distance.
2.4. The Procedure for Adjusting the Integrated Network
- —the vector of corrections type (12), (15) and (18) to be determined (curly brackets {…} stand for all elements of a type);
- A—the matrix of coefficients of the unknowns (partial derivatives) in Equations (12), (15) and (18);
- —the vector of the unknowns–increments to approximate coordinates;
- —the vector of absolute terms type (13), (16) and (19).
- P—the matrix of weights set up from mean errors of the linear pseudo-observations (9), (10) and mean errors of GNSS vector measurements (m(Δx); m(Δy); m(Δz)):
- m0—the standard error of unit weight;
- r—the number of redundant observations.
3. Results and Discussion (Numerical Example)
4. Summary and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Asteriadis, G.; Schwan, H. GPS and terrestrial measurements for detecting crustal movements in a seismic area. Surv. Rev. 1998, 34, 447–454. [Google Scholar] [CrossRef]
- Baryła, R.; Oszczak, S.; Koczot, B.; Szczechowski, B. A concept of using static GPS measurements for determination of vertical and horizontal land deformations in the Main and Old City of Gdansk. Rep. Geod. 2007, 1/82, 17–24. [Google Scholar]
- Haberler-Weber, M. Analysis and interpretation of geodetic landslide monitoring data based on fuzzy systems. Nat. Hazards Earth Syst. Sci. 2005, 5, 755–760. [Google Scholar] [CrossRef]
- Hekimoglu, S.; Erdogan, B.; Butterworth, S. Increasing the Efficacy of the Conventional Deformation Analysis Methods: Alternative Strategy. J. Surv. Eng. 2010, 136, 53–62. [Google Scholar] [CrossRef]
- Kadaj, R. Models, Methods and Computing Algorithms of Kinematic Networks in Geodetic Measurements of Movements and Deformation of Objects (Monograph in Polish); Publishing House of Agricultural University of Krakow: Krakow, Poland, 1998. [Google Scholar]
- Welsch, W.M. Problems of accuracies in combined terrestrial and satellite control networks. J. Geod. 1986, 60, 193–204. [Google Scholar] [CrossRef]
- Wiśniewski, Z.; Kamiński, W. Estimation and Prediction of Vertical Deformations of Random Surfaces, Applying the Total Least Squares Collocation Method. Sensors 2020, 20, 3913. [Google Scholar] [CrossRef] [PubMed]
- Ghilani, C.D. Adjustment Computations: Spatial Data Analysis; John Wiley & Sons. Inc.: Hoboken, NJ, USA, 2018. [Google Scholar]
- Kutoglu, H.S. Direct determination of local coordinates from GPS without transformation. Surv. Rev. 2009, 41, 162–173. [Google Scholar] [CrossRef]
- Gargula, T. The conception of integrated survey networks composed of modular networks and GPS vectors. Surv. Rev. 2009, 41, 301–313. [Google Scholar] [CrossRef]
- Gargula, T. A kinematic model of a modular network as applied for the determination of displacements. Geod. Cartogr. 2009, 58, 51–67. [Google Scholar]
- Kadaj, R. GPS vector networks with classical observations in terms of modernization of the national geodetic frameworks (in Polish). In Proceedings of the 2nd Nationwide Scientific and Technical Conference on Numerical Cartography and Computer Science in Geodesy, Rzeszów, Polańczyk, Solina, 27−29 September 2007; pp. 171–179. [Google Scholar]
- Seeber, G. Satellite Geodesy; Walter de Gruyter: Berlin, Germany; New York, NY, USA, 2003. [Google Scholar] [CrossRef]
- Fotopoulos, G.; Kotsakis, C.; Sideris, M.G. How Accurately Can We Determine Orthometric Height Differences from GPS and Geoid Data? J. Surv. Eng. 2003, 129, 1–10. [Google Scholar] [CrossRef]
- Kryński, J.; Łyszkowicz, A. Study on choice of global geopotential model for quasi-geoid determination in Poland. Geod. Cartogr. 2005, 54, 17–36. [Google Scholar]
- Osada, E.; Kryński, J.; Owczarek, M. Robust Method of Quasigeoid Modelling in Poland Based on GPS/Levelling Data with Suport of Gravity Data. Geod. Cartogr. 2005, 54, 99–117. [Google Scholar]
- You, R.-J. Local Geoid Improvement Using GPS and Leveling Data: Case Study. J. Surv. Eng. 2006, 132, 101–107. [Google Scholar] [CrossRef]
- Leick, A. Two-dimensional geodetic models. In GPS Satellite Surveying; John Wiley & Sons. Inc.: Hoboken, NJ, USA, 2004; pp. 321–339. [Google Scholar]
- Hlibowicki, R.; Krzywicka-Blum, E.; Galas, R.; Borkowski, A.; Osada, E.; Cacoń, S. Advanced Geodesy and Geodetic Astronomy (Academic Book); PWN: Warszawa/Wrocław, Poland, 1988. (In Polish) [Google Scholar]
- Gargula, T.; Kwinta, A.; Siejka, Z. The use of modular networks integrated with GPS measurements to determine the movements. Sci. Bull. Rzesz. Univ. Technol. Ser. Constr. Environ. Eng. 2012, 59, 95–107. (In Polish) [Google Scholar]
- Kutoglu, H.S.; Ayan, T.; Mekik, Ç. Integrating GPS with national networks by collocation method. Appl. Math. Comput. 2006, 177, 508–514. [Google Scholar] [CrossRef]
- Zerbini, S.; Richter, B.; Rocca, F.; Van Dam, T.; Matonti, F. A Combination of Space and Terrestrial Geodetic Techniques to Monitor Land Subsidence: Case Study, the Southeastern Po Plain, Italy. J. Geophys. Res. Space Phys. 2007, 112, 1–12. [Google Scholar] [CrossRef]
- Vaníček, P.; Steeves, R.R. Transformation of coordinates between two horizontal geodetic datums. J. Geod. 1996, 70, 740–745. [Google Scholar] [CrossRef]
- Gargula, T. GPS Vector Network Adjustment in a Local System of Coordinates Based on Linear-Angular Spatial Pseudo-Observations. J. Surv. Eng. 2011, 137, 60–64. [Google Scholar] [CrossRef]
- Wiśniewski, Z. Adjustment Calculus in Geodesy (Academic Book); Publications of University of Warmia and Mazury in Olsztyn: Olsztyn, Poland, 2005. (In Polish) [Google Scholar]
- Kudas, D.; Wnęk, A. Validation of the number of tie vectors in post-processing using the method of frequency in a centric cube. Open Geosci. 2020, 12, 242–255. [Google Scholar] [CrossRef]
- Schofield, W. Engineering Surveying; Elsevier Science & Technology Books: Oxford, UK, 2001. [Google Scholar]
Vector Labels | Observations (Components of GNSS Vectors) [m] | Mean Observation Error [m] | |||||
---|---|---|---|---|---|---|---|
From | To | ΔX | ΔY | ΔZ | mΔX | mΔY | mΔZ |
2 | 3 | 9.7354 | −22.9314 | −1.6057 | 0.0019 | 0.0016 | 0.0020 |
2 | 4 | 16.9362 | −46.7425 | −0.6996 | 0.0018 | 0.0016 | 0.0019 |
3 | 4 | 7.2020 | −23.8102 | 0.9088 | 0.0021 | 0.0016 | 0.0016 |
5 | 3 | −8.7924 | 47.6362 | −6.0945 | 0.0038 | 0.0029 | 0.0028 |
5 | 4 | −1.5898 | 23.8237 | −5.1855 | 0.0033 | 0.0026 | 0.0026 |
6 | 3 | 5.3467 | 61.6613 | −20.5954 | 0.0024 | 0.0018 | 0.0018 |
6 | 4 | 12.5497 | 37.8504 | −19.6865 | 0.0024 | 0.0019 | 0.0019 |
6 | 5 | 14.1397 | 14.0259 | −14.5022 | 0.0029 | 0.0026 | 0.0031 |
Point | X [m] | Y [m] | Z [m] |
---|---|---|---|
2 | 3,871,857.1432 | 1,345,974.9571 | 4,870,463.1848 |
3 * | 3,871,866.8786 | 1,345,952.0257 | 4,870,461.5791 |
4 * | 3,871,874.0806 | 1,345,928.2155 | 4,870,462.4879 |
5 * | 3,871,875.6704 | 1,345,904.3918 | 4,870,467.6734 |
6 | 3,871,861.5368 | 1,345,890.3711 | 4,870,482.1739 |
Station (j) | Target (k) | Height of the Instrument i [m] | Height of the Signal s [m] | Horizontal Angle β [Grad] | Vertical Angle α [Grad] | Horizontal Distance d [m] |
---|---|---|---|---|---|---|
5 | 6 | 1.733 | 1.882 | 144.35765 | 100.63750 | 24.6360 |
4 | 1.858 | 99.48384 | 24.4400 | |||
4 | 5 | 1.858 | 1.733 | 181.80672 | 100.51717 | 24.4434 |
3 | 1.821 | 100.20077 | 24.8923 | |||
3 | 4 | 1.821 | 1.858 | 190.63125 | 99.80366 | 24.8924 |
2 | 1.630 | 100.07838 | 24.9649 | |||
A priori mean errors | 0.002 | 0.002 | 0.0030 | 0.0020 | 0.004 |
Edge j-k | djk [m] | mjk(d) [m] | Edge L-R | dLR [m] | dLR [m] | mLR(d) [m] | ||
---|---|---|---|---|---|---|---|---|
From (j) | To (k) | Equation (5) | Equation (9) | From (L) | To (R) | Equation (6) | Equation (8) | Equation (10) |
5 | 6 | 24.6374 | 0.0040 | 6 | 4 | 44.4639 | 44.4663 | 0.0051 |
5 | 4 | 24.4412 | 0.0040 | 5 | 3 | 48.8329 | 48.8329 | 0.0056 |
4 | 5 | 24.4444 | 0.0040 | 4 | 2 | 49.7224 | 49.7225 | 0.0056 |
4 | 3 | 24.8924 | 0.0040 | |||||
3 | 4 | 24.8925 | 0.0040 | |||||
3 | 2 | 24.9656 | 0.0040 |
Type of Pseudo- Observation | Edge | Point No. 3 | Point No. 4 | Point No. 5 | Absolute Term l [m] | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
From | To | X | Y | Z | X | Y | Z | X | Y | Z | ||
j-k | 5 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0.574 | 0.569 | −0.589 | −0.0081 |
5 | 4 | 0 | 0 | 0 | −0.065 | 0.975 | −0.212 | 0.065 | −0.975 | 0.212 | −0.0080 | |
4 | 5 | 0 | 0 | 0 | −0.065 | 0.975 | −0.212 | 0.065 | −0.975 | 0.212 | −0.0111 | |
4 | 3 | −0.289 | 0.957 | −0.037 | 0.289 | −0.957 | 0.037 | 0 | 0 | 0 | −0.0002 | |
3 | 4 | −0.289 | 0.957 | −0.037 | 0.289 | −0.957 | 0.037 | 0 | 0 | 0 | −0.0004 | |
3 | 2 | 0.390 | −0.919 | −0.064 | 0 | 0 | 0 | 0 | 0 | 0 | −0.0015 | |
L-R | 6 | 4 | 0 | 0 | 0 | 0.282 | 0.851 | −0.443 | 0 | 0 | 0 | −0.0019 |
5 | 3 | −0.180 | 0.976 | −0.125 | 0 | 0 | 0 | 0.180 | −0.976 | 0.125 | −0.0126 | |
4 | 2 | 0 | 0 | 0 | 0.341 | −0.940 | −0.014 | 0 | 0 | 0 | −0.0019 |
Point | Coordinates of Points to Be Determined [m] | Mean Error of Coordinates [m] | Error of Position [m] | ||||
---|---|---|---|---|---|---|---|
X | Y | Z | mX | mY | mZ | mP | |
3 | 3,871,866.8806 | 1,345,952.0287 | 4,87,0461.5783 | 0.0017 | 0.0014 | 0.0015 | 0.0026 |
4 | 3,871,874.0824 | 1,345,928.2179 | 4,870,462.4867 | 0.0016 | 0.0013 | 0.0015 | 0.0026 |
5 | 3,871,875.6742 | 1,345,904.3947 | 4,870,467.6723 | 0.0027 | 0.0022 | 0.0024 | 0.0042 |
Point | Coordinates of Points to Be Determined [m] | Mean Error of Coordinates [m] | Error of Position [m] | ||||
---|---|---|---|---|---|---|---|
X | Y | Z | mX | mY | mZ | mP | |
3 | 3,871,866.8807 | 1,345,952.0287 | 4,870,461.5782 | 0.0016 | 0.0013 | 0.0014 | 0.0025 |
4 | 3,871,874.0825 | 1,345,928.2182 | 4,870,462.4865 | 0.0016 | 0.0012 | 0.0014 | 0.0025 |
5 | 3,871,875.6753 | 1,345,904.3924 | 4,870,467.6723 | 0.0025 | 0.0019 | 0.0023 | 0.0039 |
Point | Differences in Coordinates [mm] | Resultant Linear Discrepancy [mm] | Differences in Mean Errors [mm] | Differences in Error of Position [mm] | ||||
---|---|---|---|---|---|---|---|---|
X | Y | Z | δXYZ | mX | mY | mZ | mP | |
3 | −2.1 | −3.0 | 0.9 | 3.8 | 0.0 | 0.1 | 0.0 | 0.1 |
4 | −1.9 | −2.7 | 1.4 | 3.6 | 0.0 | 0.1 | 0.0 | 0.1 |
5 | −4.9 | −0.6 | 1.1 | 5.0 | 0.2 | 0.3 | 0.1 | 0.3 |
Side | GNSS Vector Network [m] | Integrated Network [m] | Difference 1 [mm] | Classical Measurement [mm] | Difference 2 [mm] | Difference 3 [mm] | |
---|---|---|---|---|---|---|---|
From | To | (dG) | (dIN) | (dG–dIN) | (dCL) | (dG–dCL) | (dIN–dCL) |
2 | 3 | 24.9621 | 24.9623 | −0.1 | 24.9650 | −2.9 | −2.8 |
3 | 4 | 24.8927 | 24.8924 | 0.3 | 24.8924 | 0.3 | −0.1 |
4 | 5 | 24.4329 | 24.4356 | −2.7 | 24.4419 | −9.0 | −6.3 |
5 | 6 | 24.6339 | 24.6331 | 0.8 | 24.6397 | −5.9 | −6.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gargula, T. Adjustment of an Integrated Geodetic Network Composed of GNSS Vectors and Classical Terrestrial Linear Pseudo-Observations. Appl. Sci. 2021, 11, 4352. https://doi.org/10.3390/app11104352
Gargula T. Adjustment of an Integrated Geodetic Network Composed of GNSS Vectors and Classical Terrestrial Linear Pseudo-Observations. Applied Sciences. 2021; 11(10):4352. https://doi.org/10.3390/app11104352
Chicago/Turabian StyleGargula, Tadeusz. 2021. "Adjustment of an Integrated Geodetic Network Composed of GNSS Vectors and Classical Terrestrial Linear Pseudo-Observations" Applied Sciences 11, no. 10: 4352. https://doi.org/10.3390/app11104352
APA StyleGargula, T. (2021). Adjustment of an Integrated Geodetic Network Composed of GNSS Vectors and Classical Terrestrial Linear Pseudo-Observations. Applied Sciences, 11(10), 4352. https://doi.org/10.3390/app11104352