Anomalous Beam Transport through Gabor (Plasma) Lens Prototype
Abstract
:1. Introduction
2. The Gabor Lens
3. Plasma Characterisation
- Plasma off: high voltage and current through coils. below the threshold for plasma to be produced;
- Stable plasma: plasma produced with high voltage below 25 kV and current below 27 A; and
- Unstable plasma: plasma produced with higher magnetic field causing considerable sparking and therefore large variations in the output amplitude.
4. Beam Test Setup
5. Characterisation of Lens Performance
- Centroid : The centroid was taken to be the weighted average of all the pixels constituting a ring above a fixed intensity threshold , where are the image moments of the pixel intensity .
- Diameter, : The diameter of the ring (or of the beam spot in images taken with the lens off) was determined along the x and y directions separately. The diameter is defined as the width of a beam spot or ring along the x or y direction after an intensity cutoff was applied to a camera image.
- Eccentricity, : The eccentricity is defined as the ratio .
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moehs, D.P.; Peters, J.; Sherman, J. Negative hydrogen ion sources for accelerators. IEEE Trans. Plasma Sci. 2005, 33, 1786–1798. [Google Scholar] [CrossRef] [Green Version]
- Lawrie, S. Understanding the Plasma and Improving Extraction of the ISIS Penning H-ions Source. Ph.D. Thesis, University of Oxford, Oxford University Research Archive (ORA), Bodleian Libraries, Osney One, Osney Mead, Oxford, UK, 2017. [Google Scholar]
- Faircloth, D.; Lawrie, S. An overview of negative hydrogen ion sources for accelerators. New J. Phys. 2018, 20, 25007. [Google Scholar] [CrossRef] [Green Version]
- Tinschert, K.; Iannucci, R.; Lang, R. Electron cyclotron resonance ion sources in use for heavy ion cancer therapy. Rev. Sci. Instrum. 2008, 79, 02C505. [Google Scholar] [CrossRef] [PubMed]
- Kitagawa, A.; Fujita, T.; Muramatsu, M.; Biri, S.; Drentje, A.G. Review on heavy ion radiotherapy facilities and related ion sources (invited). Rev. Sci. Instrum. 2010, 81, 02B909. [Google Scholar] [CrossRef]
- Chao, A.W.; Mess, K.H.; Tigner, M.; Zimmermann, F. Handbook of Accelerator Physics and Engineering, 2nd ed.; World Scientific: Singapore, 2013; Chapter Subsystems; pp. 543–765. [Google Scholar] [CrossRef]
- Nishiuchi, M.; Daito, I.; Ikegami, M.; Daido, H.; Mori, M.; Orimo, S.; Ogura, K.; Sagisaka, A.; Yogo, A.; Pirozhkov, A.S.; et al. Focusing and spectral enhancement of a repetition-rated, laser-driven, divergent multi-MeV proton beam using permanent quadrupole magnets. Appl. Phys. Lett. 2009, 94, 061107. [Google Scholar] [CrossRef]
- Busold, S.; Schumacher, D.; Deppert, O.; Brabetz, C.; Kroll, F.; Blažević, A.; Bagnoud, V.; Roth, M. Commissioning of a compact laser-based proton beam line for high intensity bunches around 10 MeV. Phys. Rev. ST Accel. Beams 2014, 17, 031302. [Google Scholar] [CrossRef] [Green Version]
- Bulanov, S.V.; Esirkepov, T.; Khoroshkov, V.S.; Kuznetsov, A.V.; Pegoraro, F. Oncological hadrontherapy with laser ion accelerators. Phys. Lett. Sect. Gen. At. Solid State Phys. 2002, 299, 240–247. [Google Scholar] [CrossRef]
- Malka, V.; Fritzler, S.; Lefebvre, E.; d’Humières, E.; Ferrand, R.; Grillon, G.; Albaret, C.; Meyroneinc, S.; Chambaret, J.P.; Antonetti, A.; et al. Practicability of protontherapy using compact laser systems. Med. Phys. 2004, 31, 1587–1592. [Google Scholar] [CrossRef] [PubMed]
- Daido, H.; Nishiuchi, M.; Pirozhkov, A.S. Review of laser-driven ion sources and their applications. Rep. Prog. Phys. 2012, 75, 56401. [Google Scholar] [CrossRef] [PubMed]
- Bin, J.; Allinger, K.; Assmann, W.; Dollinger, G.; Drexler, G.A.; Friedl, A.A.; Habs, D.; Hilz, P.; Hoerlein, R.; Humble, N.; et al. A laser-driven nanosecond proton source for radiobiological studies. Appl. Phys. Lett. 2012, 101, 243701. [Google Scholar] [CrossRef]
- Pozimski, J.; Aslaninejad, M. Gabor lenses for capture and energy selection of laser driven ion beams in cancer treatment. Laser Part. Beams 2013, 31, 723–733. [Google Scholar] [CrossRef]
- Pozimski, J.; Aslaninejad, M.; Posocco, P.A. Advanced Gabor Lens Lattice for Laser Driven Hadron Therapy and Other Applications. In Proceedings of the 7th International Particle Accelerator Conference, Busan, Korea, 8–13 May 2016. [Google Scholar] [CrossRef]
- Romano, F.; Schillaci, F.; Cirrone, G.A.P.; Cuttone, G.; Scuderi, V.; Allegra, L.; Amato, A.; Amico, A.; Candiano, G.; De Luca, G.; et al. The ELIMED transport and dosimetry beamline for laser-driven ion beams. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2016, 829, 153–158. [Google Scholar] [CrossRef] [Green Version]
- Aymar, G.; Becker, T.; Boogert, S.; Borghesi, M.; Bingham, R.; Brenner, C.; Xiao, R. The Laser-hybrid Accelerator for Radiobiological Applications. Front. Phys. 2020, 8, 567738. [Google Scholar] [CrossRef]
- Zeil, K.; Kraft, S.D.; Bock, S.; Bussmann, M.; Cowan, T.E.; Kluge, T.; Metzkes, J.; Richter, T.; Sauerbrey, R.; Schramm, U. The scaling of proton energies in ultrashort pulse laser plasma acceleration. New J. Phys. 2010, 12, 45015. [Google Scholar] [CrossRef]
- Prasad, R.; Andreev, A.A.; Ter-Avetisyan, S.; Doria, D.; Quinn, K.E.; Romagnani, L.; Brenner, C.M.; Carroll, D.C.; Dover, N.P.; Neely, D.; et al. Fast ion acceleration from thin foils irradiated by ultra-high intensity, ultra-high contrast laser pulses. Appl. Phys. Lett. 2011, 99, 121504. [Google Scholar] [CrossRef]
- Green, J.S.; Robinson, A.P.L.; Booth, N.; Carroll, D.C.; Dance, R.J.; Gray, R.J.; MacLellan, D.A.; McKenna, P.; Murphy, C.D.; Rusby, D.; et al. High efficiency proton beam generation through target thickness control in femtosecond laser-plasma interactions. Appl. Phys. Lett. 2014, 104, 214101. [Google Scholar] [CrossRef] [Green Version]
- Dover, N.; Nishiuchi, M.; Sakaki, H.; Kondo, K.; Lowe, H.; Alkhimova, M.; Ditter, E.; Ettlinger, O.; Faenov, A.; Hata, M.; et al. Demonstration of repetitive energetic proton generation by ultra-intense laser interaction with a tape target. High Energy Density Phys. 2020, 37, 100847. [Google Scholar] [CrossRef]
- Margarone, D.; Velyhan, A.; Dostal, J.; Ullschmied, J.; Perin, J.P.; Chatain, D.; Garcia, S.; Bonnay, P.; Pisarczyk, T.; Dudzak, R.; et al. Proton Acceleration Driven by a Nanosecond Laser from a Cryogenic Thin Solid-Hydrogen Ribbon. Phys. Rev. X 2016, 6, 041030. [Google Scholar] [CrossRef] [Green Version]
- Morrison, J.T.; Feister, S.; Frische, K.D.; Austin, D.R.; Ngirmang, G.K.; Murphy, N.R.; Orban, C.; Chowdhury, E.A.; Roquemore, W.M. MeV proton acceleration at kHz repetition rate from ultra-intense laser liquid interaction. New J. Phys. 2018, 20, 22001. [Google Scholar] [CrossRef]
- Schreiber, J.; Bell, F.; Grüner, F.; Schramm, U.; Geissler, M.; Schnürer, M.; Ter-Avetisyan, S.; Hegelich, B.M.; Cobble, J.; Brambrink, E.; et al. Analytical Model for Ion Acceleration by High-Intensity Laser Pulses. Phys. Rev. Lett. 2006, 97, 045005. [Google Scholar] [CrossRef] [PubMed]
- Qiao, B.; Zepf, M.; Borghesi, M.; Geissler, M. Stable GeV Ion-Beam Acceleration from Thin Foils by Circularly Polarized Laser Pulses. Phys. Rev. Lett. 2009, 102, 145002. [Google Scholar] [CrossRef] [Green Version]
- Roth, M.; Cowan, T.E.; Key, M.H.; Hatchett, S.P.; Brown, C.; Fountain, W.; Johnson, J.; Pennington, D.M.; Snavely, R.A.; Wilks, S.C.; et al. Fast Ignition by Intense Laser-Accelerated Proton Beams. Phys. Rev. Lett. 2001, 86, 436–439. [Google Scholar] [CrossRef]
- Shmatov, M.L. Some problems related to heating the compressed thermonuclear fuel through the cone. Fusion Sci. Technol. 2003, 43, 456–467. [Google Scholar] [CrossRef]
- Gabor, D. A space-charge lens for the focusing of ion beams. Nature 1947, 160, 89. [Google Scholar] [CrossRef] [PubMed]
- Mobley, R.; Gamml, G.; Maschke, A. Gabor Lenses; Report BNL–25787; Brookhaven National Lab.: Upton, NY, USA, 1979. [Google Scholar]
- Lefevre, H.W.; Booth, R. Progress in Space Charge Lens Development. IEEE Trans. Nucl. Sci. 1979, 26, 3115–3117. [Google Scholar] [CrossRef] [Green Version]
- Palkovic, J.A.; Hren, R.; Lee, G.; Mills, F.E.; Schmidt, C.W.; Wendt, J.; Young, D.E. Measurements on a Gabor Lens for Neutralizing and Focusing a 30-KeV Proton Beam. In Proceedings of the 1988 Linear Accelerator Conference (LINAC 88), Newport News, VA, USA, 3–7 October 1988. [Google Scholar]
- Tauschwitz, A.; Boggasch, E.; Wetzler, H.; Hoffmann, D.H.H.; Neuner, U.; Stetter, M.; Stöwe, S.; Tkotz, R.; de Magistris, M.; Seelig, W. Plasma lens focusing of heavy ion beams utilizing a wall-stabilized discharge. In Proceedings of the 1994 10th International Conference on High-Power Particle Beams, San Diego, CA, USA, 20–24 June 1994; Volume 2, pp. 695–698. [Google Scholar]
- Chekh, Y.M.; Goncharov, A.A.; Protsenko, I.M.; Dobrovolsky, A.M.; Brown, I.G. Electrostatic plasma lens for accelerator injection application. Rev. Sci. Instrum. 2006, 77, 03B906. [Google Scholar] [CrossRef]
- Dobrovolskiy, A.; Dunets, S.; Evsyukov, A.; Goncharov, A.; Gushenets, V.; Litovko, I.; Oks, E. Recent advances in plasma devices based on plasma lens configuration for manipulating high-current heavy ion beams. Rev. Sci. Instrum. 2010, 81, 02B704. [Google Scholar] [CrossRef]
- Schulte, K.; Droba, M.; Meusel, O.; Ratzinger, U.; Adonin, A.; Berezov, R.; Hollinger, R.; Pfister, J. Gabor Lens Performance Studies at the GSI High Current Test Injector. In Proceedings of the 4th International Particle Accelerator Conference (IPAC 2013), Shanghai, China, 12–17 May 2013; p. THPWO021. [Google Scholar]
- Pozimski, J.; Meusel, O. Space charge lenses for particle beams. Rev. Sci. Instrum. 2005, 76, 063308. [Google Scholar] [CrossRef]
- Malmberg, J.H.; de Grassie, J.S. Properties of Nonneutral Plasma. Phys. Rev. Lett. 1975, 35, 577–580. [Google Scholar] [CrossRef]
- Malmberg, J.H.; Driscoll, C.F. Long-Time Containment of a Pure Electron Plasma. Phys. Rev. Lett. 1980, 44, 654–657. [Google Scholar] [CrossRef]
- Pozimski, J.; Gross, P.; Dolling, R.; Weis, T. First experimental studies of a Gabor plasma lens in Frankfurt. Conf. Proc. C 1992, 920324, 1536–1538. [Google Scholar]
- Chekh, Y.; Goncharov, A.; Protsenko, I.; Brown, I.G. Effect of the electrostatic plasma lens on the emittance of a high-current heavy ion beam. Appl. Phys. Lett. 2005, 86, 041502. [Google Scholar] [CrossRef] [Green Version]
- Meusel, O.; Droba, M.; Glaeser, B.; Schulte, K. Experimental studies of stable confined electron clouds using Gabor lenses. AIP Conf. Proc. C 2013, 1206051, 157–160. [Google Scholar] [CrossRef]
- Levy, R.H. Diocotron Instability in a Cylindrical Geometry. Phys. Fluids 1965, 8, 1288–1295. [Google Scholar] [CrossRef] [Green Version]
- Sjobak, K.; Adli, E.; Bergamaschi, M.; Burger, S.; Corsini, R.; Curcio, A.; Curt, S.; Döbert, S.; Farabolini, W.; Gamba, D.; et al. Status of the CLEAR electron beam user facility at CERN. In Proceedings of the 10th International Particle Accelerator Conference (IPAC2019), Melbourne, Australia, 19–24 May 2019. [Google Scholar]
- Lindstrøm, C.A.; Adli, E.; Boyle, G.; Corsini, R.; Dyson, A.; Farabolini, W.; Hooker, S.; Meisel, M.; Osterhoff, J.; Röckemann, J.H.; et al. Emittance preservation in an aberration-free active plasma lens. Phys. Rev. Lett. 2018, 121, 194801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindstrøm, C.A.; Sjobak, K.; Adli, E.; Röckemann, J.H.; Schaper, L.; Osterhoff, J.; Dyson, A.; Hooker, S.; Farabolini, W.; Gamba, D.; et al. Overview of the CLEAR plasma lens experiment. Nucl. Instrum. Methods Phys. Res. Sect. A 2018, 909, 379–382. [Google Scholar] [CrossRef]
- Joshi, C.; Blue, B.; Clayton, C.; Dodd, E.; Huang, C.; Marsh, K.; Mori, W.; Wang, S.; Hogan, M.; O’Connell, C.; et al. High energy density plasma science with an ultrarelativistic electron beam. Phys. Plasmas 2002, 9, 1845–1855. [Google Scholar]
- Hogan, M.J.; Clayton, C.E.; Huang, C.; Muggli, P.; Wang, S.; Blue, B.E.; Walz, D.; Marsh, K.A.; O’Connell, C.L.; Lee, S.; et al. Ultrarelativistic-Positron-Beam Transport through Meter-Scale Plasmas. Phys. Rev. Lett. 2003, 90, 205002. [Google Scholar] [CrossRef] [Green Version]
- Muggli, P.; Blue, B.; Clayton, C.; Decker, F.; Hogan, M.; Huang, C.; Joshi, C.; Katsouleas, T.C.; Lu, W.; Mori, W.; et al. Halo formation and emittance growth of positron beams in plasmas. Phys. Rev. Lett. 2008, 101, 055001. [Google Scholar] [CrossRef] [Green Version]
- Van Tilborg, J.; Steinke, S.; Geddes, C.G.R.; Matlis, N.H.; Shaw, B.H.; Gonsalves, A.J.; Huijts, J.V.; Nakamura, K.; Daniels, J.; Schroeder, C.B.; et al. Active Plasma Lensing for Relativistic Laser-Plasma-Accelerated Electron Beams. Phys. Rev. Lett. 2015, 115, 184802. [Google Scholar] [CrossRef]
- Van Tilborg, J.; Barber, S.K.; Tsai, H.E.; Swanson, K.K.; Steinke, S.; Geddes, C.G.R.; Gonsalves, A.J.; Schroeder, C.B.; Esarey, E.; Bulanov, S.S.; et al. Nonuniform discharge currents in active plasma lenses. Phys. Rev. Accel. Beams 2017, 20, 032803. [Google Scholar] [CrossRef] [Green Version]
- Doss, C.E.; Adli, E.; Ariniello, R.; Cary, J.; Corde, S.; Hidding, B.; Hogan, M.J.; Hunt-Stone, K.; Joshi, C.; Marsh, K.A.; et al. Laser-ionized, beam-driven, underdense, passive thin plasma lens. Phys. Rev. Accel. Beams 2019, 22, 111001. [Google Scholar] [CrossRef] [Green Version]
- Barov, N.; Conde, M.E.; Gai, W.; Rosenzweig, J.B. Propagation of Short Electron Pulses in a Plasma Channel. Phys. Rev. Lett. 1998, 80, 81–84. [Google Scholar] [CrossRef] [Green Version]
- Pompili, R.; Anania, M.P.; Bellaveglia, M.; Biagioni, A.; Bini, S.; Bisesto, F.; Brentegani, E.; Castorina, G.; Chiadroni, E.; Cianchi, A.; et al. Experimental characterization of active plasma lensing for electron beams. Appl. Phys. Lett. 2017, 110, 104101. [Google Scholar] [CrossRef]
- Chiadroni, E.; Anania, M.P.; Bellaveglia, M.; Biagioni, A.; Bisesto, F.; Brentegani, E.; Zigler, A. Overview of Plasma Lens Experiments and Recent Results at SPARC_LAB. Nucl. Instrum. Meth. A 2018, 909, 16–20. [Google Scholar] [CrossRef]
- Pompili, R.; Chiadroni, E.; Cianchi, A.; Del Dotto, A.; Faillace, L.; Ferrario, M.; Iovine, P.; Masullo, M.R. Plasma lens-based beam extraction and removal system for Plasma Wakefield Acceleration experiments. Phys. Rev. Accel. Beams 2019, 22, 121302. [Google Scholar] [CrossRef] [Green Version]
- Dotto, A.D.; Chiadroni, E.; Cianchi, A.; Faillace, L.; Ferrario, M.; Iovine, P.; Masullo, M.; Pompili, R. Compact and tunable active-plasma lens system for witness extraction and driver removal. J. Phys. Conf. Ser. 2020, 1596, 012050. [Google Scholar] [CrossRef]
- Danielson, J.R.; Weber, T.R.; Surko, C.M. Plasma manipulation techniques for positron storage in a multicell trap. Phys. Plasmas 2006, 13, 123502. [Google Scholar] [CrossRef] [Green Version]
- Hurst, N.C.; Danielson, J.R.; Baker, C.J.; Surko, C.M. Confinement and manipulation of electron plasmas in a multicell trap. Phys. Plasmas 2019, 26, 013513. [Google Scholar] [CrossRef] [Green Version]
- University of Surrey Ion Beam Centre. Available online: https://www.surrey.ac.uk/ion-beam-centre (accessed on 19 January 2021).
- Neuner, U.; Bock, R.; Roth, M.; Spiller, P.; Constantin, C.; Funk, U.N.; Geissel, M.; Hakuli, S.; Hoffmann, D.H.H.; Jacoby, J.; et al. Shaping of Intense Ion Beams into Hollow Cylindrical Form. Phys. Rev. Lett. 2000, 85, 4518–4521. [Google Scholar] [CrossRef]
- Posocco, P.A.; Merchant, M.; Pozimski, J.; Xia, Y. First Test of The Imperial College Gabor (Plasma) Lens prototype at the Surrey Ion Beam centre. In Proceedings of the 7th International Particle Accelerator Conference (IPAC 2016), Busan, Korea, 8–13 May 2016; p. TUPMY024. [Google Scholar] [CrossRef]
- VSim for Plasma. 2020. Available online: https://www.txcorp.com/vsim (accessed on 12 April 2021).
- Dascalu, T.S. Numerical Study of the First Gabor Lens Prototype; Technical Note CCAP-TN-ACCL-05; The Centre for the Clinical Application of Particles (CCAP), Imperial College London: London, UK, 2021. [Google Scholar]
- Kapetanakos, C.A.; Hammer, D.A.; Striffler, C.D.; Davidson, R.C. Destructive Instabilities in Hollow Intense Relativistic Electron Beams. Phys. Rev. Lett. 1973, 30, 1303–1306. [Google Scholar] [CrossRef]
- Rosenthal, G.; Dimonte, G.; Wong, A.Y. Stabilization of the diocotron instability in an annular plasma. Phys. Fluids 1987, 30, 3257–3261. [Google Scholar] [CrossRef]
- Nevay, L.J.; Boogert, S.T.; Snuverink, J.; Abramov, A.; Deacon, L.C.; Garcia-Morales, H.; Walker, S.D. BDSIM: An accelerator tracking code with particle-matter interactions. Comput. Phys. Commun. 2020, 252, 107200. [Google Scholar] [CrossRef]
Mean (V) | Standard Deviation (V) | |
---|---|---|
Plasma Off | 0.008 | 0.019 |
Plasma On | 0.114 | 0.020 |
Plasma Unstable | 0.797 | 0.133 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nonnenmacher, T.; Dascalu, T.-S.; Bingham, R.; Cheung, C.L.; Lau, H.-T.; Long, K.; Pozimski, J.; Whyte, C. Anomalous Beam Transport through Gabor (Plasma) Lens Prototype. Appl. Sci. 2021, 11, 4357. https://doi.org/10.3390/app11104357
Nonnenmacher T, Dascalu T-S, Bingham R, Cheung CL, Lau H-T, Long K, Pozimski J, Whyte C. Anomalous Beam Transport through Gabor (Plasma) Lens Prototype. Applied Sciences. 2021; 11(10):4357. https://doi.org/10.3390/app11104357
Chicago/Turabian StyleNonnenmacher, Toby, Titus-Stefan Dascalu, Robert Bingham, Chung Lim Cheung, Hin-Tung Lau, Ken Long, Jürgen Pozimski, and Colin Whyte. 2021. "Anomalous Beam Transport through Gabor (Plasma) Lens Prototype" Applied Sciences 11, no. 10: 4357. https://doi.org/10.3390/app11104357
APA StyleNonnenmacher, T., Dascalu, T.-S., Bingham, R., Cheung, C. L., Lau, H.-T., Long, K., Pozimski, J., & Whyte, C. (2021). Anomalous Beam Transport through Gabor (Plasma) Lens Prototype. Applied Sciences, 11(10), 4357. https://doi.org/10.3390/app11104357