Assessment of Integrated Aerosol Sampling Techniques in Indoor, Confined and Outdoor Environments Characterized by Specific Emission Sources
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Comparison of Sampling Locations
3.2. Comparison with Reference Gravimetric Measurements
3.3. Granulometric Distribution of the Emitted PM
3.4. Comparison of Real-Time Sampling Devices
3.5. Estimation of the Detection Limits of the Adopted Optical Devices
4. Conclusions
- The underestimation of PM2.5 concentration indirectly calculated by low-cost optical sensors with respect to concentrations provided by the PMI, and the good alignment between the latter and the cascade impactor;
- Different LODs for the optical sensor of the AirVisual Pro (250 nm) and KORA (380 nm) systems, estimated through the comparison with PM obtained by summing up size-segregated fractions of ELPI+ and supported by statistical analysis (PARAFAC model); and
- An interesting correlation among size-segregated PM fractions measured by the cascade impactor (ELPI+) to discriminate specific emission sources indoors, in a confined environment, and outdoors.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- UNION, PEAN. Directive 2008/50/EC of the European Parliament and the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. Off. J. Eur. Union 2008, L 152, 1–44. [Google Scholar]
- Nidzgorska-Lencewicz, J.; Czarnecka, M. Thermal inversion and particulate matter concentration in Wrocław in winter season. Atmosphere 2020, 11, 1351. [Google Scholar] [CrossRef]
- Pope, C.A., III; Douglas, W. Dockery Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. Assoc. 2006, 56, 707–708. [Google Scholar] [CrossRef]
- Raaschou-Nielsen, O.; Beelen, R.; Wang, M.; Hoek, G.; Andersen, Z.J.; Hoffmann, B.; Stafoggia, M.; Samoli, E.; Weinmayr, G.; Dimakopoulou, K.; et al. Particulate matter air pollution components and risk for lung cancer. Environ. Int. 2016, 87, 66–73. [Google Scholar] [CrossRef]
- Wu, S.; Ni, Y.; Li, H.; Pan, L.; Yang, D.; Baccarelli, A.A.; Deng, F.; Chen, Y.; Shima, M.; Guo, X. Short-term exposure to high ambient air pollution increases airway inflammation and respiratory symptoms in chronic obstructive pulmonary disease patients in Beijing, China. Environ. Int. 2016, 94, 76–82. [Google Scholar] [CrossRef] [PubMed]
- De Berardis, B.; Paoletti, L. La frazione fine del particolato aerodisperso: Un inquinante di crescente rilevanza ambientale e sanitaria. Metodologie di raccolta e caratterizzazione delle singole particelle. Ann. Ist. Super. Sanita 1999, 35, 449–459. [Google Scholar]
- Fu, P.; Guo, X.; Cheung, F.M.H.; Yung, K.K.L. The association between PM 2.5 exposure and neurological disorders: A systematic review and meta-analysis. Sci. Total Environ. 2019, 655, 1240–1248. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Robins, A.; Vardoulakis, S.; Britter, R. A review of the characteristics of nanoparticles in the urban atmosphere and the prospects for developing regulatory controls. Atmos. Environ. 2010, 44, 5035–5052. [Google Scholar] [CrossRef] [Green Version]
- Stölzel, M.; Breitner, S.; Cyrys, J.; Pitz, M.; Wölke, G.; Kreyling, W.; Heinrich, J.; Wichmann, H.E.; Peters, A. Daily mortality and particulate matter in different size classes in Erfurt, Germany. J. Expo. Sci. Environ. Epidemiol. 2007, 17, 458–467. [Google Scholar] [CrossRef] [Green Version]
- Franck, U.; Herbarth, O.; Wehner, B.; Wiedensohler, A.; Manjarrez, M. How do the indoor size distributions of airborne submicron and ultrafine particles in the absence of significant indoor sources depend on outdoor distributions? Indoor Air 2003, 13, 174–181. [Google Scholar] [CrossRef]
- Zhao, J.; Weinhold, K.; Merkel, M.; Kecorius, S.; Schmidt, A.; Schlecht, S.; Tuch, T.; Wehner, B.; Birmili, W.; Wiedensohler, A. Concept of high quality simultaneous measurements of the indoor and outdoor aerosol to determine the exposure to fine and ultrafine particles in private homes. Gefahrst. Reinhalt. Luft 2018, 78, 73–78. [Google Scholar]
- Chiesa, M.; Urgnani, R.; Marzuoli, R.; Finco, A.; Gerosa, G. Site- and house-specific and meteorological factors influencing exchange of particles between outdoor and indoor domestic environments. Build. Environ. 2019, 160. [Google Scholar] [CrossRef]
- Klepeis, N.E.; Nelson, W.C.; Ott, W.R.; Robinson, J.P.; Tsang, A.M.; Switzer, P.; Behar, J.V.; Hern, S.C.; Engelmann, W.H. The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants. J. Expo. Anal. Environ. Epidemiol. 2001, 11, 231–252. [Google Scholar] [CrossRef] [Green Version]
- Brasche, S.; Bischof, W. Daily time spent indoors in German homes—Baseline data for the assessment of indoor exposure of German occupants. Int. J. Hyg. Environ. Health 2005, 208, 247–253. [Google Scholar] [CrossRef]
- Hussein, T.; Alameer, A.; Jaghbeir, O.; Albeitshaweesh, K.; Malkawi, M.; Boor, B.E.; Koivisto, A.J.; Löndahl, J.; Alrifai, O.; Al-Hunaiti, A. Indoor particle concentrations, size distributions, and exposures in middle eastern microenvironments. Atmosphere 2020, 11, 41. [Google Scholar] [CrossRef] [Green Version]
- Amato, F.; Viana, M.; Richard, A.; Furger, M.; Prévôt, A.S.H.; Nava, S.; Lucarelli, F.; Bukowiecki, N.; Alastuey, A.; Reche, C.; et al. Size and time-resolved roadside enrichment of atmospheric particulate pollutants. Atmos. Chem. Phys. 2011, 11, 2917–2931. [Google Scholar] [CrossRef] [Green Version]
- Perrino, C. Atmospheric Particulate Matter. 2010. Available online: https://www.researchgate.net/publication/228652246_Atmospheric_particulate_matter#fullTextFileContent (accessed on 23 March 2021).
- Wei, M.; Xu, C.; Xu, X.; Zhu, C.; Li, J.; Lv, G. Size distribution of bioaerosols from biomass burning emissions: Characteristics of bacterial and fungal communities in submicron (PM1.0) and fine (PM2.5) particles. Ecotoxicol. Environ. Saf. 2019, 171, 37–46. [Google Scholar] [CrossRef]
- Jovašević-Stojanović, M.; Bartonova, A.; Topalović, D.; Lazović, I.; Pokrić, B.; Ristovski, Z. On the use of small and cheaper sensors and devices for indicative citizen-based monitoring of respirable particulate matter. Environ. Pollut. 2015, 206, 696–704. [Google Scholar] [CrossRef] [PubMed]
- Chong, C.Y.; Kumar, S.P. Sensor networks: Evolution, opportunities, and challenges. Proc. IEEE 2003, 91, 1247–1256. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Morawska, L.; Martani, C.; Biskos, G.; Neophytou, M.; Di Sabatino, S.; Bell, M.; Norford, L.; Britter, R. The rise of low-cost sensing for managing air pollution in cities. Environ. Int. 2015, 75, 199–205. [Google Scholar] [CrossRef] [Green Version]
- White, R.M.; Paprotny, I.; Doering, F.; Cascio, W.E.; Solomon, P.A.; Gundel, L.A. Sensors and “apps” for community-based: Atmospheric monitoring. Air Waste Manag. Assoc. 2012, 36–40. Available online: https://www.researchgate.net/publication/279606358_Sensors_and_'apps'_for_community-based_Atmospheric_monitoring#fullTextFileContent (accessed on 23 March 2021).
- Castell, N.; Dauge, F.R.; Schneider, P.; Vogt, M.; Lerner, U.; Fishbain, B.; Broday, D.; Bartonova, A. Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? Environ. Int. 2017, 99, 293–302. [Google Scholar] [CrossRef]
- Colombi, C.; Angius, S.; Gianelle, V.; Lazzarini, M. Particulate matter concentrations, Physical characteristics and elemental composition in the Milan underground transport system. Atmos. Environ. 2013, 70, 166–178. [Google Scholar] [CrossRef]
- Crilley, L.R.; Shaw, M.; Pound, R.; Kramer, L.J.; Price, R.; Young, S.; Lewis, A.C.; Pope, F.D. Evaluation of a low-cost optical particle counter (Alphasense OPC-N2) for ambient air monitoring. Atmos. Meas. Tech. 2018, 11, 709–720. [Google Scholar] [CrossRef] [Green Version]
- Han, I.; Symanski, E.; Stock, T.H. Feasibility of using low-cost portable particle monitors for measurement of fine and coarse particulate matter in urban ambient air. J. Air Waste Manag. Assoc. 2017, 67, 330–340. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Li, J.; Jing, H.; Zhang, Q.; Jiang, J.; Biswas, P. Laboratory Evaluation and Calibration of Three Low-Cost Particle Sensors for Particulate Matter Measurement. Aerosol Sci. Technol. 2015, 49, 1063–1077. [Google Scholar] [CrossRef]
- Sousan, S.; Koehler, K.; Thomas, G.; Park, J.H.; Hillman, M.; Halterman, A.; Peters, T.M. Inter-comparison of low-cost sensors for measuring the mass concentration of occupational aerosols. Aerosol Sci. Technol. 2016, 50, 462–473. [Google Scholar] [CrossRef] [Green Version]
- Järvinen, A.; Aitomaa, M.; Rostedt, A.; Keskinen, J.; Yli-Ojanperä, J. Calibration of the new electrical low pressure impactor (ELPI+). J. Aerosol Sci. 2014, 69, 150–159. [Google Scholar] [CrossRef] [Green Version]
- Rai, A.C.; Kumar, P.; Pilla, F.; Skouloudis, A.N.; Di Sabatino, S.; Ratti, C.; Yasar, A.; Rickerby, D. End-user perspective of low-cost sensors for outdoor air pollution monitoring. Sci. Total Environ. 2017, 607–608, 691–705. [Google Scholar] [CrossRef] [Green Version]
- Snyder, E.G.; Watkins, T.H.; Solomon, P.A.; Thoma, E.D.; Williams, R.W.; Hagler, G.S.W.; Shelow, D.; Hindin, D.A.; Kilaru, V.J.; Preuss, P.W. The changing paradigm of air pollution monitoring. Environ. Sci. Technol. 2013, 47, 11369–11377. [Google Scholar] [CrossRef] [PubMed]
- Pernigotti, D.; Georgieva, E.; Thunis, P.; Bessagnet, B. Impact of meteorology on air quality modeling over the Po valley in northern Italy. Atmos. Environ. 2012, 51, 303–310. [Google Scholar] [CrossRef]
- AirVisual Pro: Smart Air Quality Monitor|IQAir. Available online: https://www.iqair.com/air-quality-monitors/airvisual-pro (accessed on 17 March 2021).
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef] [Green Version]
- Bro, R. PARAFAC. Tutorial and applications. Chemom. Intell. Lab. Syst. 1997, 38, 149–171. [Google Scholar] [CrossRef]
- Andersson, C.A.; Bro, R. The N-way Toolbox for MATLAB. Chemom. Intell. Lab. Syst. 2000, 52, 1–4. [Google Scholar] [CrossRef]
- Aria|ARPA Lombardia. Available online: https://www.arpalombardia.it/Pages/Aria/Qualita-aria.aspx (accessed on 17 March 2021).
- Singh, V.; Sahu, S.K.; Kesarkar, A.P.; Biswal, A. Estimation of high resolution emissions from road transport sector in a megacity Delhi. Urban Climate 2018, 26, 109–120. [Google Scholar] [CrossRef]
- DECRETO LEGISLATIVO 155, GU Serie Generale n.216 del 15-09-2010—Suppl. Ordinario n. 217. 2010. Available online: https://www.gazzettaufficiale.it/eli/id/2010/09/15/010G0177/sg (accessed on 23 March 2021).
- Abdel-Shafy, H.I.; Mansour, M.S.M. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 2016, 25, 107–123. [Google Scholar] [CrossRef] [Green Version]
- Dorado, M.P.; Ballesteros, E.; Arnal, J.M.; Gómez, J.; López, F.J. Exhaust emissions from a Diesel engine fueled with transesterified waste olive oil. Fuel 2003, 82, 1311–1315. [Google Scholar] [CrossRef]
- Salo, L.; Mylläri, F.; Maasikmets, M.; Niemelä, V.; Konist, A.; Vainumäe, K.; Kupri, H.L.; Titova, R.; Simonen, P.; Aurela, M.; et al. Emission measurements with gravimetric impactors and electrical devices: An aerosol instrument comparison. Aerosol Sci. Technol. 2019, 53, 526–539. [Google Scholar] [CrossRef]
- Burkart, J.; Steiner, G.; Reischl, G.; Moshammer, H.; Neuberger, M.; Hitzenberger, R. Characterizing the performance of two optical particle counters (Grimm OPC1.108 and OPC1.109) under urban aerosol conditions. J. Aerosol Sci. 2010, 41, 953–962. [Google Scholar] [CrossRef] [Green Version]
- Giavarina, D. Understanding Bland Altman analysis. Biochem. Med. 2015, 25, 141–151. [Google Scholar] [CrossRef] [Green Version]
- Laucks, M.L. Aerosol Technology Properties, Behavior, and Measurement of Airborne Particles. J. Aerosol Sci. 2000, 31, 1121–1122. [Google Scholar] [CrossRef]
- Bro, R.; Kiers, H.A.L. A new efficient method for determining the number of components in PARAFAC models. J. Chemom. 2003, 17, 274–286. [Google Scholar] [CrossRef]
Stage | D50% (µm) |
---|---|
F | 0.006 |
2 | 0.016 |
3 | 0.0309 |
4 | 0.0547 |
5 | 0.0951 |
6 | 0.155 |
7 | 0.256 |
8 | 0.382 |
9 | 0.603 |
10 | 0.948 |
11 | 1.63 |
12 | 2.47 |
13 | 3.66 |
14 | 5.37 |
Monitoring Site, Date, and Environmental Condition | Sampling Device | (PM2.5) Total Mass (μg) |
---|---|---|
Outdoor 26 March 2018 | ELPI | 267 (1) |
PMI | 250 (2) | |
Garage 27 March 2018 | ELPI | 277 (1) |
PMI | 270 (2) |
Monitoring Site, Date, and Environmental Condition | Sampling Device | RE% | PM2.5 Daily Concentrations (μg/m3) | ||
---|---|---|---|---|---|
AVERAGE | MIN | MAX | |||
Indoor quiet 12 March 2018 | AirVisual Pro | 13.0 | 3.8 | 1.0 | 6.0 |
KORA | 1.4 | 3.6 | 1.9 | 9.7 | |
ELPI+ | 1.0 | 4.9 | 1.7 | 15.6 | |
Indoor quiet 13 March 2018 | AirVisual Pro | 7.6 | 6.6 | 3.0 | 12.0 |
KORA | 0.9 | 5.9 | 3.7 | 9.5 | |
ELPI+ | 1.0 | 9.0 | 0.00004 | 26.2 | |
Indoor quiet 14 March 2018 | AirVisual Pro | 5.5 | 9.1 | 5.0 | 15.0 |
KORA | 0.6 | 8.0 | 4.3 | 12.2 | |
ELPI+ | 1.0 | 11.7 | 0.1 | 21.7 | |
Indoor busy 15 March 2018 | AirVisual Pro | 2.6 | 19.4 | 7.0 | 46.0 |
KORA | 0.4 | 14.1 | 6.5 | 26.1 | |
ELPI+ | 1.0 | 19.8 | 0.0003 | 43.5 | |
Indoor busy 16 March 2018 | AirVisual Pro | 5.8 | 8.6 | 3.0 | 20.0 |
KORA | 0.6 | 7.9 | 3.8 | 19.5 | |
ELPI+ | 1.0 | 10 | 0.3 | 43 | |
Indoor quiet 19 March 2018 | AirVisual Pro | 11.0 | 4.5 | 1.0 | 11.0 |
KORA | 1.1 | 4.6 | 0.7 | 9.9 | |
ELPI+ | 1.0 | 5.3 | 0.0003 | 14.6 | |
Indoor busy 20 March 2018 | AirVisual Pro | 3.1 | 16.3 | 4.0 | 29.0 |
KORA | 0.4 | 13.4 | 5.8 | 21.7 | |
ELPI+ | 1.0 | 19.8 | 0.0003 | 51.3 | |
Indoor busy 21 March 2018 | AirVisual Pro | 3.3 | 15.2 | 9.0 | 29.0 |
KORA | 0.4 | 12.5 | 8.6 | 24.1 | |
ELPI+ | 1.0 | 18.9 | 0.0003 | 49.0 | |
Indoor quiet 22 March 2018 | AirVisualPro | 2.1 | 23.3 | 11.0 | 43.0 |
KORA | 0.3 | 19.7 | 10.2 | 37.3 | |
ELPI+ | 1.0 | 26.8 | 0.0003 | 48.0 | |
Indoor busy 23 March 2018 | AirVisual Pro | 4.6 | 10.8 | 2.0 | 16.0 |
KORA | 0.6 | 8.7 | 6.3 | 15.2 | |
ELPI+ | 1.0 | 13.4 | 0.007 | 22.8 | |
Outdoors 26 March 2018 | AirVisual Pro | 1.1 | 45.2 | 13.0 | 197.6 |
KORA | 0.1 | 38.5 | 32.8 | 81.9 | |
ELPI+ | 1.0 | 54.4 | 38.8 | 454.4 | |
Garage 27 March 2018 | AirVisual Pro | 1.1 | 47.3 | 34.0 | 78.3 |
KORA | 0.1 | 39.0 | 29.8 | 64.4 | |
ELPI+ | 1.0 | 51.1 | 35.5 | 301.7 |
Components | Loss | % Explained Variance | Core Consistency |
---|---|---|---|
1 | 1.00 | 66.15 | 100 |
2 | 0.56 | 81.17 | 100 |
3 | 0.30 | 89.72 | 7.65 |
4 | 0.21 | 92.89 | 17.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borgese, L.; Chiesa, M.; Assi, A.; Marchesi, C.; Mutahi, A.W.; Kasemi, F.; Federici, S.; Finco, A.; Gerosa, G.; Zappa, D.; et al. Assessment of Integrated Aerosol Sampling Techniques in Indoor, Confined and Outdoor Environments Characterized by Specific Emission Sources. Appl. Sci. 2021, 11, 4360. https://doi.org/10.3390/app11104360
Borgese L, Chiesa M, Assi A, Marchesi C, Mutahi AW, Kasemi F, Federici S, Finco A, Gerosa G, Zappa D, et al. Assessment of Integrated Aerosol Sampling Techniques in Indoor, Confined and Outdoor Environments Characterized by Specific Emission Sources. Applied Sciences. 2021; 11(10):4360. https://doi.org/10.3390/app11104360
Chicago/Turabian StyleBorgese, Laura, Maria Chiesa, Ahmad Assi, Claudio Marchesi, Anne Wambui Mutahi, Franko Kasemi, Stefania Federici, Angelo Finco, Giacomo Gerosa, Dario Zappa, and et al. 2021. "Assessment of Integrated Aerosol Sampling Techniques in Indoor, Confined and Outdoor Environments Characterized by Specific Emission Sources" Applied Sciences 11, no. 10: 4360. https://doi.org/10.3390/app11104360
APA StyleBorgese, L., Chiesa, M., Assi, A., Marchesi, C., Mutahi, A. W., Kasemi, F., Federici, S., Finco, A., Gerosa, G., Zappa, D., Comini, E., Carnevale, C., Volta, M., Placidi, D., Lucchini, R., Bontempi, E., & Depero, L. E. (2021). Assessment of Integrated Aerosol Sampling Techniques in Indoor, Confined and Outdoor Environments Characterized by Specific Emission Sources. Applied Sciences, 11(10), 4360. https://doi.org/10.3390/app11104360