Dense U-Net for Limited Angle Tomography of Sound Pressure Fields
Abstract
:1. Introduction
2. State-of-the-Art
2.1. Sound Pressure Measurements
2.2. CLIV
2.3. Tomographic Reconstruction
2.4. Deep Learning
3. Experimental Setup and Methodology
3.1. Experimental Setup and Measurement Execution
3.2. Methodology
3.3. Neuronal Network Training
4. Results
4.1. Synthetic Data
4.2. Measurement Data
5. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kiefhaber, S.; Rosenbaum, M.; Sauer-Greff, W.; Urbansky, R. A relation between algebraic and transform-based reconstruction technique in computed tomography. Adv. Radio Sci. 2013, 11, 95–100. [Google Scholar] [CrossRef]
- Kalke, M.; Siltanen, S. Sinogram Interpolation Method for Sparse-Angle Tomography. Appl. Math. 2014, 05, 423–441. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Zhu, Y.; Li, L.; Yang, T. Feature-based sparse angle tomography reconstruction for dynamic characterization of bio-cellular materials. In Computer Imaging III; SPIE: Orlando, FL, USA, 2018; p. 22. [Google Scholar] [CrossRef]
- Ayoub, A.B.; Pham, T.A.; Lim, J.; Unser, M.; Psaltis, D. A method for assessing the fidelity of optical diffraction tomography reconstruction methods using structured illumination. Opt. Commun. 2020, 454, 124486. [Google Scholar] [CrossRef]
- Yalavarthy, P.K.; Pogue, B.W.; Dehghani, H.; Carpenter, C.M.; Jiang, S.; Paulsen, K.D. Structural information within regularization matrices improves near infrared diffuse optical tomography. Opt. Express 2007, 15, 8043. [Google Scholar] [CrossRef]
- Zhang, X.; Curtis, A. Seismic Tomography Using Variational Inference Methods. J. Geophys. Res. Solid Earth 2020, 125. [Google Scholar] [CrossRef] [Green Version]
- Gürtler, J.; Greiffenhagen, F.; Woisetschläger, J.; Kuschmierz, R.; Czarske, J. Seedingless measurement of density fluctuations and flow velocity using high-speed holographic interferometry in a swirl-stabilized flame. Opt. Lasers Eng. 2020, 06481. [Google Scholar] [CrossRef]
- Kupsch, A.; Lange, A.; Hentschel, M.P.; Manke, I.; Kardjilov, N.; Arlt, T.; Grothausmann, R. Rekonstruktion limitierter CT-Messdatensätze von Brennstoffzellen mit Directt. Mater. Test. 2010, 52, 676–683. [Google Scholar] [CrossRef] [Green Version]
- Ramos Ruiz, A.E.; Gürtler, J.; Kuschmierz, R.; Czarske, J.W. Measurement of the Local Sound Pressure on a Bias-Flow Liner Using High-Speed Holography and Tomographic Reconstruction. IEEE Access 2019, 7, 153466–153474. [Google Scholar] [CrossRef]
- Torras-Rosell, A.; Barrera-Figueroa, S.; Jacobsen, F. Sound field reconstruction using acousto-optic tomography. J. Acoust. Soc. Am. 2012, 131, 3786–3793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haufe, D.; Gürtler, J.; Schulz, A.; Bake, F.; Enghardt, L.; Czarske, J. Aeroacoustic analysis using natural Helmholtz–Hodge decomposition. J. Sens. Sens. Syst. 2018, 7, 113–122. [Google Scholar] [CrossRef] [Green Version]
- Heuwinkel, C.; Piot, E.; Micheli, F.; Fischer, A.; Enghardt, L.; Bake, F.; Röhle, I. Characterization of a Perforated Liner by Acoustic and Optical Measurements. In Proceedings of the 16th AIAA/CEAS Aeroacoustics Conference, Stockholm, Sweden, 7–9 June 2010; pp. 1–15. [Google Scholar] [CrossRef]
- Abernathy, D.L.; Stone, M.B.; Loguillo, M.J.; Lucas, M.S.; Delaire, O.; Tang, X.; Lin, J.Y.Y.; Fultz, B. Design and operation of the wide angular-range chopper spectrometer ARCS at the Spallation Neutron Source. Rev. Sci. Instrum. 2012, 83, 015114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Huang, X.; Taubmann, O.; Xia, Y.; Haase, V.; Hornegger, J.; Lauritsch, G.; Maier, A. Restoration of missing data in limited angle tomography based on Helgason—Ludwig consistency conditions. Biomed. Phys. Eng. Express 2017, 3, 035015. [Google Scholar] [CrossRef]
- Kadu, A.; Mansour, H.; Boufounos, P.T. High-Contrast Reflection Tomography With Total-Variation Constraints. IEEE Trans. Comput. Imaging 2020, 6, 1523–1536. [Google Scholar] [CrossRef]
- Zhang, H.; Li, L.; Qiao, K.; Wang, L.; Yan, B.; Li, L.; Hu, G. Image Prediction for Limited-angle Tomography via Deep Learning with Convolutional Neural Network. arXiv 2016, arXiv:1607.08707. [Google Scholar]
- Frikel, J.; Quinto, E.T. Characterization and reduction of artifacts in limited angle tomography. Inverse Probl. 2013, 29, 125007. [Google Scholar] [CrossRef] [Green Version]
- Assili, S. A Review of Tomographic Reconstruction Techniques for Computed Tomography. arXiv 2018, arXiv:1808.09172. [Google Scholar]
- Zhang, Z.; Liang, X.; Dong, X.; Xie, Y.; Cao, G. A Sparse-View CT Reconstruction Method Based on Combination of DenseNet and Deconvolution. IEEE Trans. Med. Imaging 2018, 37, 1407–1417. [Google Scholar] [CrossRef]
- Dong, J.; Fu, J.; He, Z. A deep learning reconstruction framework for X-ray computed tomography with incomplete data. PLoS ONE 2019, 14, e0224426. [Google Scholar] [CrossRef] [Green Version]
- McCann, M.T.; Jin, K.H.; Unser, M. Convolutional Neural Networks for Inverse Problems in Imaging: A Review. IEEE Signal Process. Mag. 2017, 34, 85–95. [Google Scholar] [CrossRef] [Green Version]
- Pham, T.A.; Soubies, E.; Ayoub, A.; Psaltis, D.; Unser, M. Adaptive Regularization for Three-Dimensional Optical Diffraction Tomography. In Proceedings of the 2020 IEEE 17th International Symposium on Biomedical Imaging, Iowa City, IA, USA, 3–7 April 2020; pp. 182–186. [Google Scholar] [CrossRef]
- Zhou, K.C.; Horstmeyer, R. Diffraction tomography with a deep image prior. Opt. Express 2020, 28, 12872. [Google Scholar] [CrossRef]
- Allen, C.S.; Blake, W.K.; Dougherty, R.P.; Lynch, D.; Soderman, P.T.; Underbrink, J.R. Aeroacoustic Measurements; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar] [CrossRef]
- Rafaely, B. Analysis and design of spherical microphone arrays. IEEE Trans. Speech Audio Process. 2005, 13, 135–143. [Google Scholar] [CrossRef]
- Hoffmann, M.; Unger, A.; Jager, A.; Kupnik, M. Effect of transducer port cavities in invasive ultrasonic transit-time gas flowmeters. In Proceedings of the 2015 IEEE International Ultrasonics Symposium, Taipei, Taiwan, 21–24 October 2015; pp. 1–4. [Google Scholar] [CrossRef]
- Choi, H.; Park, J.; Lim, W.; Yang, Y.M. Active-beacon-based driver sound separation system for autonomous vehicle applications. Appl. Acoust. 2021, 171, 107549. [Google Scholar] [CrossRef]
- Meyer, J.; Elko, G. A highly scalable spherical microphone array based on an orthonormal decomposition of the soundfield. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Orlando, FL, USA, 13–17 May 2002; pp. II-1781–II-1784. [Google Scholar] [CrossRef]
- Greiffenhagen, F.; Woisetschläger, J.; Gürtler, J.; Czarske, J. Quantitative measurement of density fluctuations with a full-field laser interferometric vibrometer. Exp. Fluids 2020, 61, 9. [Google Scholar] [CrossRef] [Green Version]
- Greiffenhagen, F.; Peterleithner, J.; Woisetschläger, J.; Fischer, A.; Gürtler, J.; Czarske, J. Discussion of laser interferometric vibrometry for the determination of heat release fluctuations in an unconfined swirl-stabilized flame. Combust. Flame 2019, 201, 315–327. [Google Scholar] [CrossRef]
- Prabhat, P.; Arumugam, S.; Madan, V. FilteringinFiltered Backprojection Computerized Tomography. In Proceedings of the National Conference “NCNTE-2012” at Fr. CRIT, Vashi, Navi Mumbai, India, 24–25 February 2012. [Google Scholar] [CrossRef]
- Lim, J.; Lee, K.; Jin, K.H.; Shin, S.; Lee, S.; Park, Y.; Ye, J.C. Comparative study of iterative reconstruction algorithms for missing cone problems in optical diffraction tomography. Opt. Express 2015, 23, 16933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, A.; Sohail, A.; Zahoora, U.; Qureshi, A.S. A survey of the recent architectures of deep convolutional neural networks. Artif. Intell. Rev. 2020, 53, 5455–5516. [Google Scholar] [CrossRef] [Green Version]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Munich, Germany, 5–9 October 2015; pp. 34–241. [Google Scholar] [CrossRef] [Green Version]
- Rothe, S.; Zhang, Q.; Koukourakis, N.; Czarske, J. Intensity-Only Mode Decomposition on Multimode Fibers Using a Densely Connected Convolutional Network. J. Light. Technol. 2021, 39, 1672–1679. [Google Scholar] [CrossRef]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Wang, Z.; Bovik, A.; Sheikh, H.; Simoncelli, E. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Zhang, Z.; Huang, Y.; Li, Z.; Huang, Q. A 3D convolutional neural network based near-field acoustical holography method with sparse sampling rate on measuring surface. Measurement 2021, 177, 109297. [Google Scholar] [CrossRef]
Offset in Pa | in mm | in mm | in Pa | in mm | in mm | in | ||
---|---|---|---|---|---|---|---|---|
training set | [0.5; 30] | [0.4; 1] | [0.4; 1] | [0.1; 30] | [1; 130] | [5; 15] | [3; 10] | [0; 180] |
example set | 2.8 | 1 | 1 | 0.8 | 35 | 6 | 4 | 12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rothkamm, O.; Gürtler, J.; Czarske, J.; Kuschmierz, R. Dense U-Net for Limited Angle Tomography of Sound Pressure Fields. Appl. Sci. 2021, 11, 4570. https://doi.org/10.3390/app11104570
Rothkamm O, Gürtler J, Czarske J, Kuschmierz R. Dense U-Net for Limited Angle Tomography of Sound Pressure Fields. Applied Sciences. 2021; 11(10):4570. https://doi.org/10.3390/app11104570
Chicago/Turabian StyleRothkamm, Oliver, Johannes Gürtler, Jürgen Czarske, and Robert Kuschmierz. 2021. "Dense U-Net for Limited Angle Tomography of Sound Pressure Fields" Applied Sciences 11, no. 10: 4570. https://doi.org/10.3390/app11104570
APA StyleRothkamm, O., Gürtler, J., Czarske, J., & Kuschmierz, R. (2021). Dense U-Net for Limited Angle Tomography of Sound Pressure Fields. Applied Sciences, 11(10), 4570. https://doi.org/10.3390/app11104570