Effect of By-Products from Selected Fruits and Vegetables on Gluten-Free Dough Rheology and Bread Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Breadmaking Materials
2.2. By-Product Materials
2.2.1. Preparation of By-Product Samples
2.2.2. Physico-Chemical Analysis of By-Product Samples
Proximate Composition
Extraction of Pectins from By-Product Samples
Water-Holding Capacity
2.3. Characteriscics of the Bread Dough
2.3.1. Rheofermentometric Analysis
2.3.2. Rheological Measurements of Dough (Flow Test)
2.4. Bread-Making Process
2.4.1. Pre-Hydration of By-Products
2.4.2. Preparation of Bread
2.5. Bread Quality Evaluation
2.5.1. Specific Volume
2.5.2. Moisture Content
2.5.3. Measurement of pH Values
2.5.4. Color Analysis
2.5.5. Crumb Cell Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Properties of By-Products
3.1.1. Proximate Composition
3.1.2. Water-Holding Capacity
3.1.3. Pectin
3.2. Gas Production and Dough Development Parameters during Fermentation
3.3. Rheological Properties of Dough
3.4. Characteristics of the Quality of Bread
3.4.1. Weight Loss
3.4.2. Specific Volume of Bread
3.4.3. pH Value of Bread
3.4.4. Moisture Content of Bread
3.4.5. Crust and Crumb Color of Bread
3.4.6. Crumb Structure of Bread
3.5. Cluster Analysis
3.6. Multivariate Analysis of the Rheofermentometer and Rheological Parameters of Dough and Bread Quality
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El Khoury, D.; Balfour-Ducharme, S.; Joye, I.J. A review on the gluten-free diet: Technological and nutritional challenges. Nutrients 2018, 10, 1410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naqash, F.; Gani, A.; Gani, A.; Masoodi, F. Gluten-free baking: Combating the challenges-A review. Trends Food Sci. Technol. 2017, 66, 98–107. [Google Scholar] [CrossRef]
- Melini, F.; Melini, V.; Luziatelli, F.; Ruzzi, M. Current and forward-looking approaches to technological and nutritional improvements of gluten-free bread with legume flours: A critical review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1101–1122. [Google Scholar] [CrossRef] [PubMed]
- Hager, A.-S.; Wolter, A.; Czerny, M.; Bez, J.; Zannini, E.; Arendt, E.K.; Czerny, M. Investigation of product quality, sensory profile and ultrastructure of breads made from a range of commercial gluten-free flours compared to their wheat counterparts. Eur. Food Res. Technol. 2012, 235, 333–344. [Google Scholar] [CrossRef]
- Kurek, M.; Wyrwisz, J. The application of dietary fiber in bread products. J. Food Process. Technol. 2015, 6, 447–450. [Google Scholar] [CrossRef]
- Bourekoua, H.; Gawlik-Dziki, U.; Różyło, R.; Zidoune, M.N.; Dziki, D. Acerola fruit as a natural antioxidant ingredient for gluten-free bread: An approach to improve bread quality. Food Sci. Technol. Int. 2020, 27, 13–21. [Google Scholar] [CrossRef]
- Matos, M.E.; Rosell, C.M. Understanding gluten-free dough for reaching breads with physical quality and nutritional balance. J. Sci. Food Agric. 2015, 95, 653–661. [Google Scholar] [CrossRef] [PubMed]
- Salehi, F. Improvement of gluten-free bread and cake properties using natural hydrocolloids: A review. Food Sci. Nutr. 2019, 7, 3391–3402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourekoua, H.; Różyło, R.; Benatallah, L.; Wójtowicz, A.; Łysiak, G.; Zidoune, M.N.; Sujak, A. Characteristics of gluten-free bread: Quality improvement by the addition of starches/hydrocolloids and their combinations using a definitive screening design. Eur. Food Res. Technol. 2017, 244, 345–354. [Google Scholar] [CrossRef] [Green Version]
- Collar, C. Gluten-free dough-based foods and technologies. In Sorghum and Millets; Elsevier: Amsterdam, The Netherlands, 2019; pp. 331–354. [Google Scholar] [CrossRef]
- O’Shea, N.; Arendt, E.; Gallagher, E. State of the art in gluten-free research. J. Food Sci. 2014, 79, R1067–R1076. [Google Scholar] [CrossRef] [Green Version]
- Roman, L.; Belorio, M.; Gomez, M. Gluten-Free breads: The gap between research and commercial reality. Compr. Rev. Food Sci. Food Saf. 2019, 18, 690–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gómez, M.; Martinez, M.M. Fruit and vegetable by-products as novel ingredients to improve the nutritional quality of baked goods. Crit. Rev. Food Sci. Nutr. 2018, 58, 2119–2135. [Google Scholar] [CrossRef] [PubMed]
- Bedrníček, J.; Jirotková, D.; Kadlec, J.; Laknerová, I.; Vrchotová, N.; Tříska, J.; Samková, E.; Smetana, P. Thermal stability and bioavailability of bioactive compounds after baking of bread enriched with different onion by-products. Food Chem. 2020, 319, 126562. [Google Scholar] [CrossRef] [PubMed]
- Kumar, H.; Bhardwaj, K.; Sharma, R.; Nepovimova, E.; Kuča, K.; Dhanjal, D.S.; Verma, R.; Bhardwaj, P.; Sharma, S.; Kumar, D. Fruit and vegetable peels: Utilization of high value horticultural waste in novel industrial applications. Molecules 2020, 25, 2812. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.N.; Sharma, M.; Lata, K.; Singh, U.; Kumar, V.; Sangwan, R.S.; Singh, S.P. Improved operational stability of d-psicose 3-epimerase by a novel protein engineering strategy, and d-psicose production from fruit and vegetable residues. Bioresour. Technol. 2016, 216, 121–127. [Google Scholar] [CrossRef]
- Pathak, P. Medicinal Properties of Fruit and Vegetable Peels. Adv. Bioeng. 2020, 115–128. [Google Scholar] [CrossRef]
- Anwar, M.; Sallam, E. Utilization of prickly pear peels to improve quality of pan bread. Arab J. Nucl. Sci. Appl. 2016, 49, 151–163. [Google Scholar]
- Coman, V.; Teleky, B.-E.; Mitrea, L.; Martău, G.A.; Szabo, K.; Călinoiu, L.-F.; Vodnar, D.C. Bioactive potential of fruit and vegetable wastes. Adv. Food Nutr. Res. 2020, 91, 157–225. [Google Scholar] [CrossRef]
- Salim, N.; Abdelwaheb, C.; Rabah, C.; Ahcene, B. Chemical composition of Opuntia ficus-indica (L.) fruit. Afr. J. Biotechnol. 2009, 8, 1623–1624. [Google Scholar]
- Babiker, W.A.; Sulieman, A.M.E.; Elhardallou, S.B.; Khalifa, E. Physicochemical properties of wheat bread supplemented with orange peel by-products. Int. J. Food Sci. Nutr. 2013, 2, 1–4. [Google Scholar] [CrossRef]
- Mironeasa, S.; Mironeasa, C. Dough bread from refined wheat flour partially replaced by grape peels: Optimizing the rheological properties. J. Food Process. Eng. 2019, 42, e13207. [Google Scholar] [CrossRef]
- Pathak, D.; Majumdar, J.; Raychaudhuri, U.; Chakraborty, R. Characterization of physicochemical properties in whole wheat bread after incorporation of ripe mango peel. J. Food Meas. Charact. 2016, 10, 554–561. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis; Association of Official Analytical Chemists: Rockville, MD, USA, 2005. [Google Scholar]
- Henneberg, W.; Stohmann, F. Beiträge zur Begründung einer Rationellen Fütterung der Wiederkäuer; Braunschweig: Schwetschke, Germany, 1864; Volume 2. [Google Scholar]
- Abid, M.; Cheikhrouhou, S.; Renard, C.M.; Bureau, S.; Cuvelier, G.; Attia, H.; Ayadi, M. Characterization of pectins extracted from pomegranate peel and their gelling properties. Food Chem. 2017, 215, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Doukani, K.; Tabak, S. Profil Physicochimique du fruit” Lendj”(Arbutus unedo L.). Nat. Technol. 2015, 51, 53–66. [Google Scholar]
- Liew, S.Q.; Chin, N.L.; Yusof, Y.A. Extraction and characterization of pectin from passion fruit peels. Agric. Agric. Sci. Procedia 2014, 2, 231–236. [Google Scholar] [CrossRef] [Green Version]
- Torralbo, D.; Batista, K.; Di-Medeiros, M.; Fernandes, K. Extraction and partial characterization of Solanum lycocarpum pectin. Food Hydrocoll. 2012, 27, 378–383. [Google Scholar] [CrossRef]
- McConnell, A.; Eastwood, M.; Mitchell, W. Physical characteristics of vegetable foodstuffs that could influence bowel function. J. Sci. Food Agric. 1974, 25, 1457–1464. [Google Scholar] [CrossRef]
- Ang, J.F. Water retention capacity and viscosity effect of powdered cellulose. J. Food Sci. 1991, 56, 1682–1684. [Google Scholar] [CrossRef]
- Rabetafika, H.N.; Bchir, B.; Aguedo, M.; Paquot, M.; Blecker, C. Effects of processing on the compositions and physicochemical properties of fibre concentrate from cooked fruit pomaces. Food Bioproc. Technol. 2014, 7, 749–760. [Google Scholar] [CrossRef]
- Gómez, M.; Talegón, M.; De La Hera, E. Influence of mixing on quality of gluten-free bread. J. Food Qual. 2013, 36, 139–145. [Google Scholar] [CrossRef]
- Martínez, M.M.; Díaz, Á.; Gómez, M. Effect of different microstructural features of soluble and insoluble fibres on gluten-free dough rheology and bread-making. J. Food Eng. 2014, 142, 49–56. [Google Scholar] [CrossRef]
- Ronda, F.; Pérez-Quirce, S.; Villanueva, M. Rheological properties of gluten-free bread doughs: Relationship with bread quality. In Advances in Food Rheology and Its Applications; Elsevier: Amsterdam, The Netherlands, 2017; pp. 297–334. [Google Scholar] [CrossRef]
- Altuna, L.; Ribotta, P.D.; Tadini, C.C. Effect of a combination of enzymes on dough rheology and physical and sensory properties of bread enriched with resistant starch. LWT Food Sci. Technol. 2015, 64, 867–873. [Google Scholar] [CrossRef]
- Dai, S.; Qi, F.; Tanner, R. Interpreting shear creep data for bread dough using a damage function model. Appl. Rheol. 2011, 21. [Google Scholar] [CrossRef]
- Hicks, C.I.; See, H. The rheological characterisation of bread dough using capillary rheometry. Rheol. Acta 2010, 49, 719–732. [Google Scholar] [CrossRef]
- Tanner, R.I.; Qi, F.; Dai, S.-C. Bread dough rheology and recoil: I. Rheology. J. Non-Newton. Fluid Mech. 2008, 148, 33–40. [Google Scholar] [CrossRef]
- Witczak, M.; Korus, J.; Ziobro, R.; Juszczak, L. The effects of maltodextrins on gluten-free dough and quality of bread. J. Food Eng. 2010, 96, 258–265. [Google Scholar] [CrossRef]
- Sabanis, D.; Lebesi, D.; Tzia, C. Effect of dietary fibre enrichment on selected properties of gluten-free bread. LWT Food Sci. Technol. 2009, 42, 1380–1389. [Google Scholar] [CrossRef]
- Chen, H.; Rubenthaler, G.; Leung, H.; Baranowski, J. Chemical, physical, and baking properties of apple fiber compared with wheat and oat bran. Cereal Chem. 1988, 65, 244–247. [Google Scholar]
- Keskin, S.O.; Sumnu, G.; Sahin, S. Bread baking in halogen lamp–microwave combination oven. Food Res. Int. 2004, 37, 489–495. [Google Scholar] [CrossRef]
- AACC. American Association of Cereal Chemists. Approved Methods of the AACC; The Association: St Paul, MN, USA, 2000. [Google Scholar]
- ICC. Standard Methods of the International Association for Cereal Science and Technology; International Association for Cereal Chemistry: Vienna, Austria, 1996. [Google Scholar]
- Majzoobi, M.; Poor, Z.V.; Jamalian, J.; Farahnaky, A. Improvement of the quality of gluten-free sponge cake using different levels and particle sizes of carrot pomace powder. Int. J. Food Sci. Technol. 2016, 51, 1369–1377. [Google Scholar] [CrossRef]
- Majzoobi, M.; Vosooghi Poor, Z.; Mesbahi, G.; Jamalian, J.; Farahnaky, A. Effects of carrot pomace powder and a mixture of pectin and xanthan on the quality of gluten-free batter and cakes. J. Texture Stud. 2017, 48, 616–623. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Pei, Q.; Xu, T.; Zhang, X. Smartphone-based tape sensors for multiplexed rapid urinalysis. Sens. Actuators B Chem. 2020, 304, 127415. [Google Scholar] [CrossRef]
- Chen, C.; Ren, M. The significance of license plate location based on Lab color space. In Proceedings of the 2nd International Conference on Information, Electronics and Computer, Wuhan, China, 7–9 March 2014; Atlantis Press: Paris, France, 2014. [Google Scholar]
- Skinner, R.C.; Gigliotti, J.C.; Ku, K.-M.; Tou, J.C. A comprehensive analysis of the composition, health benefits, and safety of apple pomace. Nutr. Rev. 2018, 76, 893–909. [Google Scholar] [CrossRef]
- Ocen, D.; Xu, X. Effect of citrus orange (Citrus sinensis) by-product dietary fiber preparations on the quality characteristics of frozen dough bread. Am. J. Food Technol. 2013, 8, 43–53. [Google Scholar] [CrossRef] [Green Version]
- Bchir, B.; Rabetafika, H.N.; Paquot, M.; Blecker, C. Effect of pear, apple and date fibres from cooked fruit by-products on dough performance and bread quality. Food Bioprocess Technol. 2014, 7, 1114–1127. [Google Scholar] [CrossRef]
- Yılmaz, E.; Emir, D.D. Compositional and functional characterisation of poppy seed (Papaver somniferum L.) press cake meals. Qual. Assur. Saf. Crop Foods 2017, 9, 141–151. [Google Scholar] [CrossRef]
- Hosseini, S.S.; Khodaiyan, F.; Kazemi, M.; Najari, Z. Optimization and characterization of pectin extracted from sour orange peel by ultrasound assisted method. Int. J. Biol. Macromol. 2019, 125, 621–629. [Google Scholar] [CrossRef]
- Boubaker, M.; Omri, A.E.; Blecker, C.; Bouzouita, N. Fibre concentrate from artichoke (Cynara scolymus L.) stem by-products: Characterization and application as a bakery product ingredient. Food Sci. Technol. Int. 2016, 22, 759–768. [Google Scholar] [CrossRef]
- O’shea, N.; Rößle, C.; Arendt, E.; Gallagher, E. Modelling the effects of orange pomace using response surface design for gluten-free bread baking. Food Chem. 2015, 166, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Grigelmo-Miguel, N.; Martín-Belloso, O. Characterization of dietary fiber from orange juice extraction. Food Res. Int. 1998, 31, 355–361. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Q.; Lü, X. Pectin extracted from apple pomace and citrus peel by subcritical water. Food Hydrocoll. 2014, 38, 129–137. [Google Scholar] [CrossRef]
- Sundarraj, A.A.; Ranganathan, T.V. A review-Pectin from Agro and industrial waste. Int. J. Appl. Environ. Sci. 2017, 12, 1777–1801. [Google Scholar]
- Dalal, N.; Neeraj, V.B.; Dhakar, U. Potential of fruit and vegetable waste as a source of pectin. IJCS 2020, 8, 3085–3090. [Google Scholar] [CrossRef]
- Verheyen, C.; Jekle, M.; Becker, T. Effects of Saccharomyces cerevisiae on the structural kinetics of wheat dough during fermentation. LWT Food Sci. Technol. 2014, 58, 194–202. [Google Scholar] [CrossRef]
- Sudha, M. Apple pomace (by-product of fruit juice industry) as a flour fortification strategy. In Flour and Breads and Their Fortification in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2011; pp. 395–405. [Google Scholar] [CrossRef]
- Gowe, C. Review on potential use of fruit and vegetables by-products as a valuable source of natural food additives. Food Sci. Qual. Manag. 2015, 45, 47–61. [Google Scholar]
- Chiocchetti, G.D.M.E.; Fernandes, E.A.D.N.; Bacchi, M.A.; Pazim, R.A.; Sarriés, S.R.V.; Tome, T.M. Mineral composition of fruit by-products evaluated by neutron activation analysis. J. Radioanal. Nucl. Chem. 2013, 297, 399–404. [Google Scholar] [CrossRef]
- Walker, G.M.; Stewart, G.G. Saccharomyces cerevisiae in the production of fermented beverages. Beverages 2016, 2, 30. [Google Scholar] [CrossRef]
- Struyf, N.; Van der Maelen, E.; Hemdane, S.; Verspreet, J.; Verstrepen, K.J.; Courtin, C.M. Bread dough and baker’s yeast: An uplifting synergy. Compr. Rev. Food Sci. Food Saf. 2017, 16, 850–867. [Google Scholar] [CrossRef] [Green Version]
- Zhu, F.; Sakulnak, R.; Wang, S. Effect of black tea on antioxidant, textural, and sensory properties of Chinese steamed bread. Food Chem. 2016, 194, 1217–1223. [Google Scholar] [CrossRef]
- Cheremisinoff, N.P. Practical Fluid Mechanics for Engineers & Scientists; CRC Press: Boca Raton, FL, USA, 1990. [Google Scholar]
- Krokida, M.; Maroulis, Z.; Saravacos, G. Rheological properties of fluid fruit and vegetable puree products: Compilation of literature data. Int. J. Food Prop. 2001, 4, 179–200. [Google Scholar] [CrossRef]
- Ramsey, M. Rheology, Viscosity, and Fluid Types. Pract. Wellbore Hydraul. Hole Clean. 2019, 217–237. [Google Scholar]
- Padmanabhan, M.; Bhattacharya, M. Flow behavior and exit pressures of corn meal under high-shear–high-temperature extrusion conditions using a slit diea. J. Rheol. 1991, 35, 315–343. [Google Scholar] [CrossRef]
- Fraiha, M.; Biagi, J.D.; Ferraz, A.C.d.O. Rheological behavior of corn and soy mix as feed ingredients. Food Sci. Technol. 2011, 31, 129–134. [Google Scholar] [CrossRef] [Green Version]
- Drozdek, K.D.; Faller, J.F. Use of a dual orifice die for on-line extruder measurement of flow behavior index in starchy foods. J. Food Eng. 2002, 55, 79–88. [Google Scholar] [CrossRef]
- Milde, L.B.; Ramallo, L.A.; Puppo, M.C. Gluten-free bread based on tapioca starch: Texture and sensory studies. Food Bioproc. Technol. 2012, 5, 888–896. [Google Scholar] [CrossRef]
- Parra, A.F.R.; Ribotta, P.D.; Ferrero, C. Apple pomace in gluten-free formulations: Effect on rheology and product quality. Int. J. Food Sci. Technol. 2015, 50, 682–690. [Google Scholar] [CrossRef]
- O’shea, N.; Ktenioudaki, A.; Smyth, T.; McLoughlin, P.; Doran, L.; Auty, M.; Arendt, E.; Gallagher, E. Physicochemical assessment of two fruit by-products as functional ingredients: Apple and orange pomace. J. Food Eng. 2015, 153, 89–95. [Google Scholar] [CrossRef]
- Arslan, M.; Rakha, A.; Khan, M.R.; Zou, X. Complementing the dietary fiber and antioxidant potential of gluten free bread with guava pulp powder. J. Food Meas. Charact. 2017, 11, 1959–1968. [Google Scholar] [CrossRef]
- Singh, J.P.; Kaur, A.; Singh, N. Development of eggless gluten-free rice muffins utilizing black carrot dietary fibre concentrate and xanthan gum. J. Food Sci. Technol. 2016, 53, 1269–1278. [Google Scholar] [CrossRef] [Green Version]
- Türker, B.; Savlak, N.; Kaşıkcı, M.B. Effect of green banana peel flour substitution on physical characteristics of gluten-free cakes. Curr. Res. Nutr. Food Sci. J. 2016, 4, 197–204. [Google Scholar] [CrossRef]
- Khosravi, F.; Iranmanesh, B.; Olia, S.S.S.J. Determination of Organic Acids in Fruit juices by UPLC. Int. J. Life Sci. 2015, 9, 41–44. [Google Scholar] [CrossRef] [Green Version]
- Tezcan, F.; Uzaşçı, S.; Uyar, G.; Öztekin, N.; Erim, F.B. Determination of amino acids in pomegranate juices and fingerprint for adulteration with apple juices. Food Chem. 2013, 141, 1187–1191. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Ariza, J.; Villegas-Portero, M.; Bernal-Daza, V. Characterization and analysis of amino acids in orange juice by HPLC–MS/MS for authenticity assessment. Anal. Chim. Acta 2005, 540, 221–230. [Google Scholar] [CrossRef]
- Martins, Z.; Pinho, O.; Ferreira, I. Fortification of Wheat Bread with Agroindustry By-Products: Statistical Methods for Sensory Preference Evaluation and Correlation with Color and Crumb Structure. J. Food Sci. 2017, 82, 2183–2191. [Google Scholar] [CrossRef] [PubMed]
- Capriles, V.D.; Arêas, J.A.G. Novel approaches in gluten-free breadmaking: Interface between food science, nutrition, and health. Compr. Rev. Food Sci. Food Saf. 2014, 13, 871–890. [Google Scholar] [CrossRef]
- Jafari, M.; Koocheki, A.; Milani, E. Functional effects of xanthan gum on quality attributes and microstructure of extruded sorghum-wheat composite dough and bread. LWT Food. Sci. Technol. 2018, 89, 551–558. [Google Scholar] [CrossRef]
- Goriewa-Duba, K.; Duba, A.; Wachowska, U.; Wiwart, M. An evaluation of the variation in the morphometric parameters of grain of six Triticum species with the use of digital image analysis. Agronomy 2018, 8, 296. [Google Scholar] [CrossRef] [Green Version]
- Alba, K.; Rizou, T.; Paraskevopoulou, A.; Campbell, G.M.; Kontogiorgos, V. Effects of blackcurrant fibre on dough physical properties and bread quality characteristics. Food Biophys. 2020, 313–322. [Google Scholar] [CrossRef]
Product | By-Product | Waste Content (%) |
---|---|---|
Orange * | Peel + pulp | 94.50 |
Seeds | 5.50 | |
Apple * | Peel + pulp | 91.22 |
Seeds | 8.78 | |
Tomato * | Peel | 52.13 |
Seeds | 47.87 | |
Pepper * | Peel | 61.5 |
Seeds | 38.50 | |
Prickly pear ** | Peel | 46.60 |
Seeds + pulp | 53.40 |
Wheat CTRL1 | GF CTRL 2 | 2.5% B-P | 5% B-P | 7.5% B-P | |
---|---|---|---|---|---|
Wheat flour (g) | 100 | 0 | 0 | 0 | 0 |
Corn (g) | 0 | 66.67 | 65 | 63.33 | 61.67 |
Chickpea flour (g) | 0 | 33.33 | 32.5 | 31.67 | 30.83 |
DOP/ DAP/ DPP/ DTP/ DPPP/DPPSP (g) | 0 | 0 | 2.5 | 5 | 7.5 |
Water for dough (mL) | 63.25 | 100 | 97.5 | 95 | 92.5 |
Water for pre-hydration (mL) | 0 | 0 | 2.5 × X | 5 ×X | 7.5 × X |
Salt(g) | 2 | 2 | 2 | 2 | 2 |
Yeast (g) | 2 | 2 | 2 | 2 | 2 |
Moisture (%) | Protein (%) | Fat (%) | Fiber (%) | Ash (%) | Carbohydrates (%) | WHC (g/g d.w) | Pectin (%) | |
---|---|---|---|---|---|---|---|---|
DOP | 9.90 ± 0.00 a | 5.40 ± 0.12 a | 4.37 ± 0.56 a | 12.41 ± 0.13 a | 3.76 ± 0.01 a | 64.16 | 7.42 ± 0.27 c | 21.92 ± 1.11 a |
DAP | 11.41 ± 0.28 b | 3.66 ± 0.23 b | 3.16 ± 0.80 c | 15.90 ± 0.02 b | 1.51 ± 0.08 b | 64.36 | 6.84 ± 1.17 c | 8.65 ± 0.03 b |
DPP | 6.04 ± 0.37 d | 4.38 ± 0.20 d | 2.46 ± 0.03 bc | 49.00 ± 0.1 d | 2.92 ± 0.00 c | 35.20 | 4.61 ± 0.15 b | 5.76 ± 0.15 d |
DTP | 5.23 ± 0.38 c | 7.87 ± 0.05 c | 3.31 ± 0.35 c | 52.90 ± 0.16 c | 3.61 ± 0.05 a | 27.08 | 5.40 ± 0.34 b | 3.91 ± 0.24 c |
DPPP | 10.29 ± 0.03 a | 8.48 ± 0.09 e | 1.69 ± 0.13 db | 7.41 ± 0.26 e | 19.60 ± 0.15 d | 52.53 | 4.83 ± 0.33 b | 7.14 ± 0.07 e |
DPPSP | 7.87 ± 0.04 e | 7.00 ± 0.23 f | 1.03 ± 0.07 d | 50.80 ± 0.30 f | 16.42 ± 0.34 e | 16.88 | 4.59 ± 0.04 b | 9.85 ± 0.20 f |
P | 0.0000 | <0.0001 | 0.0022 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | |
F | 181,63 | 93,580.682 | 15.68 | 961,272.49 | 4720.53 | 19.28 | 508.60 |
Addition Level | Hm | H′m | T1 | T´1 | Tx | h | W | Vt CO2 | Vl CO2 | VrCO2 | RCO2 | Hadjm | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
% | mm | mm | min | min | min | mm | % | mL | mL | mL | % | mm | |
Wheat CTRL 1 | 0 | 34.6 | 77.4 | 63:0 | 43:30 | 55:30 | 32.6 | 5.8 | 939 | 37 | 902 | 96.1 | 34.6 |
GF CTRL 2 | 0 | 4.1 | 96.3 | 84:0 | 45:00 | 31:30 | 3.9 | 4.9 | 874 | 259 | 615 | 70.4 | 4.10 |
CTRL 2+DOP | 2.5 | 4.0 | 98.1 | 30:0 | 45:00 | 30:00 | 3.2 | 20.0 | 979 | 80 | 899 | 91.9 | 3.57 |
5 | 5.0 | 91.9 | 28:3 | 45:00 | 25:30 | 1.6 | 68.0 | 943 | 89 | 854 | 90.6 | 4.63 | |
7.5 | 6.6 | 85.3 | 31:3 | 57:00 | 28:30 | 0.9 | 86.4 | 953 | 91 | 862 | 90.5 | 6.05 | |
CTRL 2 +DAP | 2.5 | 6.5 | 104.7 | 39:0 | 49:30 | 27:00 | 2.4 | 63.1 | 1151 | 144 | 1006 | 87.5 | 4.94 |
5 | 7.8 | 105.0 | 43:30 | 55:30 | 31:30 | 2.4 | 69.2 | 1179 | 132 | 1047 | 88.8 | 5.78 | |
7.5 | 7.5 | 103.9 | 30:0 | 54:00 | 28:30 | 3.3 | 56.0 | 1221 | 164 | 1058 | 86.6 | 5.37 | |
CTRL 2+DPP | 2.5 | 5.9 | 106.8 | 52:30 | 43:30 | 24:00 | 5.0 | 15.3 | 1083 | 107 | 975 | 90.1 | 4.76 |
5 | 6.4 | 103.0 | 36:00 | 36:00 | 24:00 | 4.0 | 37.5 | 1004 | 114 | 890 | 88.7 | 5.57 | |
7.5 | 3.9 | 100.3 | 39:00 | 39:00 | 25:30 | 2.3 | 41.0 | 996 | 100 | 896 | 90.0 | 3.42 | |
CTRL 2+DTP | 2.5 | 8.2 | 98.8 | 39:00 | 40:30 | 27:00 | 1.0 | 87.8 | 1014 | 98 | 917 | 90.3 | 7.07 |
5 | 6.5 | 102.2 | 31:30 | 36:00 | 27:00 | 1.4 | 78.5 | 969 | 96 | 874 | 90.1 | 5.86 | |
7.5 | 7.7 | 97.6 | 25:30 | 33:00 | 25:30 | 1.6 | 79.2 | 937 | 90 | 848 | 90.4 | 7.18 | |
CTRL 2+DPPP | 2.5 | 7.6 | 108.3 | 48:00 | 46:30 | 22:30 | 4.0 | 47.4 | 1118 | 103 | 1015 | 90.8 | 5.94 |
5 | 7.8 | 109.1 | 36:00 | 42:00 | 24:00 | 3.6 | 53.8 | 1136 | 148 | 988 | 87.0 | 6.00 | |
7.5 | 5.8 | 105.7 | 58:30 | 46:30 | 24:00 | 4.8 | 17.2 | 1166 | 158 | 1008 | 86.4 | 4.35 | |
CTRL 2+DPPSP | 2.5 | 5.8 | 105.6 | 61:30 | 43:30 | 28:30 | 5.6 | 3.4 | 1070 | 100 | 970 | 90.6 | 4.74 |
5 | 4.7 | 102.8 | 43:30 | 37:30 | 24:00 | 3.3 | 29.8 | 993 | 105 | 887 | 89.4 | 4.14 | |
7.5 | 5.7 | 106.3 | 31:30 | 33:00 | 27:00 | 4.6 | 19.3 | 969 | 97 | 872 | 90.0 | 5.14 |
Addition Level (%) | K (Pa.sn) | n | χ2 | r | |
---|---|---|---|---|---|
WheatCTRL 1 | 0 | 141.90 ± 25.74 e | 0.33 ± 0.04 a | 0.25 ± 0.06 | 0.97 ± 0.007 |
GF CTRL 2 | 0 | 173.30 ± 20.08 de | 0.29 ± 0.02 ab | 0.47 ± 0.26 | 0.97 ± 0.007 |
DOP | 2.5 | 216.60 ± 134.49 de | 0.08 ± 0.01 bcdefg | 1.77 ± 0.40 | 0.93 ± 0.01 |
5 | 221.70 ± 48.93 de | −0.11 ± 0.09 abcde | 5.21 ± 3.76 | 0.88 ± 0.04 | |
7.5 | 134.55 ± 9.83 e | −0.25 ± 0.04 efg | 0.94 ± 0.14 | 0.98 ± 0.004 | |
DAP | 2.5 | 337.30 ± 95.74 bcde | 0.10 ± 0.06 abcde | 0.54 ± 0.27 | 0.98 ± 0.01 |
5 | 291.40 ± 22.84 de | −0.12 ± 0.02 fg | 4.88 ± 2.67 | 0.89 ± 0.06 | |
7.5 | 159.60 ± 21.64 e | 0.03 ± 0.02 abcdef | 4.37 ± 0.05 | 0.87 ± 0.01 | |
DPP | 2.5 | 289.65 ± 130.74 cde | 0.05 ± 0.05 abcde | 0.86 ± 0.62 | 0.97 ± 0.02 |
5 | 182.76 ± 67.76 e | 0.17 ± 0.04 abcd | 1.73 ± 1.19 | 0.87 ± 0.05 | |
7.5 | 103.71 ± 39.73 e | 0.23 ± 0.08 abc | 0.28 ± 0.17 | 0.98 ± 0.01 | |
DTP | 2.5 | 955.40 ± 323.29 ab | -0.20 ± 0.00 defg | 2.83 ± 0.46 | 0.94 ± 0.01 |
5 | 229.05 ± 80.40 de | 0.14 ± 0.01 cdefg | 1.15 ± 1.43 | 0.95 ± 0.06 | |
7.5 | 125.75 ± 20.7 e | 0.162 ± 0.08 abcde | 0.05 ± 0.03 | 0.99 ± 0.00 | |
DPPP | 2.5 | 822.70 ± 37.62 abcd | −0.211 ± 0.24 defg | 4.93 ± 5.68 | 0.92 ± 0.07 |
5 | 1049.00 ± 548.71 a | −0.376 ± 0.16 fg | 8.17 ± 2.11 | 0.92 ± 0.01 | |
7.5 | 895.85 ± 106.84 abc | −0.436 ± 0.06 g | 4.92 ± 1.84 | 0.93 ± 0.02 | |
DPPSP | 2.5 | 399.0 ± 285.81 abcde | 0.033 ± 0.12 abcdef | 1.12 ± 1.03 | 0.96 ± 0.02 |
5 | 434.35 ± 63.00 abcde | −0.078 ± 0.17 abcdefg | 4.53 ± 3.01 | 0.90 ± 0.03 | |
7.5 | 480.05 ± 24.54 abcde | −0.03 ± 0.18 abcdefg | 2.31 ± 3.10 | 0.95 ± 0.06 | |
P | < 0.0001 | < 0.0001 | |||
F | 6.48 | 7.50 |
Level Addition (%) | WL (%) | Vsp (cm3/g) | pH-Value | Moisture Content (%) | |
---|---|---|---|---|---|
Wheat CTRL 1 | 0 | 25 ± 0.015 bcd | 3.39 ± 0.02 a | 5.65 ± 0.02 gh | 27.21 ± 0.01 k |
GF CTRL 2 | 0 | 18.09 ± 0.22 gh | 1.48 ± 0.22 i | 5.76 ± 0.12 c | 29.60 ± 0.23 h |
DOP | 2.5 | 18.33 ± 2.35 h | 2.00 ± 0.03 f | 5.59 ± 0.06 k | 31.13 ± 0.06 a |
5 | 26.11 ± 0.78 ab | 2.25 ± 0.02 c | 5.26 ± 0.23 n | 30.19 ± 0.42 d | |
7.5 | 27.77 ± 1.57 a | 2.46 ± 0.05 b | 5.21 ± 0.50 o | 30.02 ± 0.50 f | |
DAP | 2.5 | 23.88 ± 0.78 cde | 2.02 ±0.08 f | 5.68 ± 0.16 ef | 30.24 ± 0.04 d |
5 | 26.66 ± 3.14 ab | 2.04 ± 0.01 f | 5.58 ± 0.03 l | 30.20 ± 0.16 d | |
7.5 | 25.55 ± 0.00 bc | 2.16 ± 0.10 ef | 5.51 ± 0.01 m | 30.42 ± 0.01 c | |
DPP | 2.5 | 20.45 ± 0.37 f | 1.69 ± 0.01 h | 5.68 ± 0.36 fg | 29.57 ± 0.36 h |
5 | 20.45 ± 0.29 f | 2.04 ± 0.06 f | 5.57 ± 0.20 l | 29.63 ± 0.29 h | |
7.5 | 20.51 ± 0.33 f | 2.10 ± 0.10 de | 5.63 ± 0.40 i | 30.72 ± 0.12 b | |
DTP | 2.5 | 23.88 ± 0.78 cde | 2.21 ± 0.02 cd | 5.57 ± 0.08 l | 29.01 ± 0.20 i |
5 | 23.33 ± 0.00 de | 2.10 ± 0.10 ef | 5.66 ± 0.10 h | 29.57 ± 0.08 h | |
7.5 | 19.42 ± 0.007 fg | 2.20 ± 0.00 cd | 5.70 ± 0.01 e | 29.57 ± 0.40 h | |
DPPP | 2.5 | 19.05 ± 0.01 fg | 1.83 ± 0.00 g | 5.73 ± 0.40 d | 30.00 ± 0.03 e |
5 | 19.28 ± 0.08 fg | 2.50 ± 0.04 b | 5.80 ± 0.14 b | 30.35 ± 0.09 c | |
7.5 | 22.76 ± 0.16 e | 2.15 ± 0.004 de | 5.68 ± 0.03 fg | 29.70 ± 0.21 g | |
DPPSP | 2.5 | 20.32 ± 0.10 f | 1.72 ± 0.08 h | 5.61 ± 0.08 i | 28.71 ± 0.12 j |
5 | 20.84 ± 0.48 f | 1.72 ± 0.04 h | 5.61 ± 0.04 i | 30.20 ± 0.05 d | |
7.5 | 20.9 ± 0.26 f | 2.02 ± 0.20 f | 5.87 ± 0.06 a | 30.22 ± 0.03 d | |
P | < 0.0001 | < 0.0001 | < 0.0001 | < 0.0001 | |
F | 22.34 | 181.02 | 1056.020 | 10211.024 |
Addition Level (%) | Crust Color | Crumb Color | |||||
---|---|---|---|---|---|---|---|
L* | a* | b* | L* | a* | b* | ||
Wheat CTRL1 | 0 | 81.06 ± 2.23 a | 4.78 ± 1.69 cdef | 45.58 ± 1.11 k | 91.62 ± 2.09 a | −2.8 ± 0.51 hi | 24.18 ± 3.54 n |
GF CTRL 2 | 0 | 74.6 ± 3.95 bc | 4.4 ± 1.54 def | 53.96 ± 2.06 bcdef | 80.42 ± 2.62 bc | −1.64 ± 0.70 gh | 45.36 ± 1.30 de |
DOP | 2.5 | 69.46 ± 9.63 cd | 2.075 ± 1.69 f | 47.84 ± 1.96 ijk | 66.86 ± 0.96 gh | −0.64 ± 0.42 fg | 34.42 ± 1.49 kl |
5 | 58.82 ± 3.02 fgh | 14.52 ± 1.89 bc | 52.68 ± 3.91 defg | 68.4 ± 2.27 fg | −0.12 ± 0.94 ef | 35.24 ± 2.05 jk | |
7.5 | 62.68 ± 2.42 efg | 10.48 ± 2.32 bcdef | 51.88 ± 2.30 defgh | 65.84 ± 1.32 gh | 1.76 ± 1.46 cd | 40.36 ± 1.28 fgh | |
DAP | 2.5 | 66.58 ± 6.88 de | 9.58 ± 2.93 bcdef | 54.25 ± 3.32 bcde | 64.12 ± 1.55 hi | 0.00 ± 1.33 ef | 33.2 ± 1.47 klm |
5 | 62.12 ± 2.05 efgh | 8.54 ± 3.06 bcdef | 50.88 ± 3.35 fghi | 61.2 ± 2.1 ijk | 0.49 ± 1.08 def | 31.66 ± 1.06 lm | |
7.5 | 63.56 ± 3.72 ef | 5.82 ± 1.89 bcdef | 46.36 ± 2.60 jk | 60.74 ± 1.95 k | 1.08 ± 0.81 de | 31.66 ± 1.06 m | |
DPP | 2.5 | 70.88 ± 4.12 cd | 10.32 ± 2.48 bcdef | 56.1 ± 1.04 abc | 72.56 ± 6.52 de | 3.48 ± 1.49 b | 44.14 ± 2.17 e |
5 | 71.08 ± 3.32 cd | 12.88 ± 2.29 bcde | 54.64 ± 1.38 abcd | 78.94 ± 1.47 c | 3.32 ± 1.02 b | 47.48 ± 1.22 bc | |
7.5 | 66.84 ± 5.78 de | 15.48 ± 2.64 b | 53.2 ± 1.97 cdefg | 70.5 ± 1.54 ef | 9.00 ± 0.44 a | 48.58 ± 1.04 b | |
DTP | 2.5 | 57.52 ± 1.29 h | 13.36 ± 0.89 bcde | 52.14 ± 1.68 defgh | 63.88 ± 1.71 hij | 1.82 ± 1.25 cd | 38.92 ± 2.03 hi |
5 | 56.7 ± 2.28 gh | 14.04 ± 1.57 bcd | 54.5 ± 2.17 bcd | 60.86 ± 1.21 jk | 3.98 ± 0.89 b | 42.04 ± 2.12 f | |
7.5 | 62.68 ± 2.7 efg | 6.9 ± 0.81 bcdef | 54.66 ± 0.86 abcd | 74.06 ± 1.52 d | 3.06 ± 0.97 bc | 51.18 ± 1.58 a | |
DPPP | 2.5 | 70.56 ± 3.13 cd | 12.7 ± 2.07 a | 57.66 ± 1.75 a | 80.66 ± 1.97 bc | −1.88 ± 0.60 gh | 46.06 ± 1.24 cde |
5 | 69.66 ± 3.59 cd | 7.46 ± 1.42 bcdef | 56.64 ± 2.46 ab | 80.48 ± 2.99 bc | 3.56 ± 1.22 i | 46.24 ± 1.79 cd | |
7.5 | 56.86 ± 9.17 gh | 14.58 ± 1.74 bc | 51.22 ± 3.91 efghi | 60.72 ± 2.15 k | 3.70 ± 1.81 b | 47.02 ± 1.13 bcd | |
DPPSP | 2.5 | 80.34 ± 2.73 ab | 3.36 ± 1.18 ef | 50.82 ± 4.77 fghi | 82.2 ± 2.05 b | -1.86 ± 0.82 gh | 41.04 ± 0.79 fg |
5 | 62.18 ± 6.19 efgh | 12.84 ± 1.5 bcde | 50.68 ± 1.40 ghi | 74.46 ± 3.28 d | 0.25 ± 0.36 def | 39.62 ± 0.71 gh | |
7.5 | 73.28 ± 4.81 c | 6.28 ± 3.00 bcdef | 49.32 ± 0.75 hij | 77.74 ± 2.39 c | -0.24 ± 0.87 f | 37.06 ± 1.35 ij | |
P | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |
F | 11.81 | 2.72 | 8.26 | 63.74 | 39.66 | 86.24 |
Number of Cells/mm2 | Average Cell Size (mm2) | Area Fraction (%) | Perimeter | Circularity | Solidity | ||
---|---|---|---|---|---|---|---|
WheatCTRL1 | 0 | 203 ± 8 bcd | 1.672 ± 0.26 a | 18.25 ± 1.34 a | 4.32 ± 0.27 a | 0.81 ± 0.007 i | 0.85 ± 0.006 f |
GFCTRL 2 | 0 | 239 ± 13 abc | 0.46 ± 0.12 cde | 12.85 ± 3.18 bc | 2.28 ± 0.29 defgh | 0.87 ± 0.01 cdefg | 0.87 ± 0.00 cdef |
DOP | 2.5 | 122 ± 23 ef | 0.55 ± 0.19 cde | 5.85 ± 2.33 hi | 2.64 ± 0.50 cdef | 0.85 ± 0.02 gh | 0.86 ± 0.00 def |
5 | 78 ± 6 f | 0.91 ± 0.14 b | 7.25 ± 0.49 efgh | 3.08 ± 0.06 bc | 0.86 ± 0.01 cdefg | 0.881 ± 0.01 cd | |
7.5 | 100 ± 0 f | 0.67 ± 0.04 bc | 5.9 ± 0.57 ghi | 2.80 ± 0.15 bcd | 0.86 ± 0.01 hi | 0.85 ± 0.01 def | |
DAP | 2.5 | 86 ± 6 f | 0.49 ± 0.16 cde | 3.65 ± 0.92 i | 2.15 ± 0.15 efgh | 0.89 ± 0.03 bcde | 0.89 ± 0.03 bc |
5 | 116 ± 20 f | 0.61 ± 0.09 cd | 6.57 ± 2.21 fghi | 2.67 ± 0.25 cde | 0.86 ± 0.02 efgh | 0.87 ± 0.01 def | |
7.5 | 125 ± 21 ef | 0.65 ± 0.17 bc | 7.97 ± 0.61 efgh | 2.80 ± 0.32 cd | 0.85 ± 0.02 gh | 0.86 ± 0.01 ef | |
DPP | 2.5 | 308 ± 25 a | 0.34 ± 0.05 e | 11.65 ± 1.91 bcd | 2.02 ± 0.20 gh | 0.88 ± 0.02 cdef | 0.88 ± 0.01 cd |
5 | 200 ± 2 cde | 0.36 ± 0.02 de | 6.90 ± 0.99 fghi | 1.87 ± 0.17 h | 0.91 ± 0.00 ab | 0.91 ± 0.00 ab | |
7.5 | 239 ± 35 abc | 0.37 ± 0.02 de | 9.25 ± 0.78 defg | 2.08 ± 0.07 fgh | 0.89 ± 0.01 bc | 0.89 ± 0.00 bc | |
DTP | 2.5 | 210 ± 9 bcd | 0.46 ± 0.12 cde | 9.30 ± 1.25 def | 2.35 ± 0.25 defgh | 0.87 ± 0.02 cdef | 0.88 ± 0.00 cde |
5 | 262 ± 37 ab | 0.48 ± 0.08 cde | 11.95 ± 0.59 bcd | 2.50 ± 0.06 defg | 0.85 ± 0.02 gh | 0.86 ± 0.01 f | |
7.5 | 242 ± 58 abc | 0.50 ± 0.03 cde | 10.30 ± 3.11 cde | 2.35 ± 0.01 defgh | 0.90 ± 0.00 bc | 0.89 ± 0.00 bc | |
DPPP | 2.5 | 308 ± 8 a | 0.52 ± 0.05 cde | 14.10 ± 0.42 bc | 2.46 ± 0.15 defgh | 0.88 ± 0.01 bcdef | 0.88 ± 0.00 bcd |
5 | 175 ± 7 de | 0.89 ± 0.11 b | 14.55 ± 1.20 b | 3.37 ± 0.22 b | 0.86 ± 0.01 defgh | 0.87 ± 0.01 def | |
7.5 | 190 ± 8 cd | 0.49 ± 0.19 cde | 11.05 ± 2.33 cd | 2.39 ± 0.52 defgh | 0.85 ± 0.01 fgh | 0.87 ± 0.01 def | |
DPPSP | 2.5 | 115 ± 76 f | 0.59 ± 0.31 cde | 5.20 ± 0.85 hi | 2.37 ± 0.63 defgh | 0.93 ± 0.02 a | 0.92 ± 0.00 a |
5 | 223 ± 56 bcd | 0.44 ± 0.04 cde | 10.45 ± 1.06 cde | 2.20 ± 0.01 efgh | 0.90 ± 0.03 bcd | 0.89 ± 0.02 bc | |
7.5 | 302 ± 29 a | 0.43 ± 0.09 cde | 13.05 ± 1.20 bc | 2.11 ± 0.24 fgh | 0.87 ± 0.01 cdefg | 0.88 ± 0.00 cd | |
P | < 0.0001 | 0.001 | < 0.0001 | 0.004 | 0.000 | 0.001 | |
F | 12.15 | 9.16 | 10.34 | 8.00 | 7.414 | 6.653 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Djeghim, F.; Bourekoua, H.; Różyło, R.; Bieńczak, A.; Tanaś, W.; Zidoune, M.N. Effect of By-Products from Selected Fruits and Vegetables on Gluten-Free Dough Rheology and Bread Properties. Appl. Sci. 2021, 11, 4605. https://doi.org/10.3390/app11104605
Djeghim F, Bourekoua H, Różyło R, Bieńczak A, Tanaś W, Zidoune MN. Effect of By-Products from Selected Fruits and Vegetables on Gluten-Free Dough Rheology and Bread Properties. Applied Sciences. 2021; 11(10):4605. https://doi.org/10.3390/app11104605
Chicago/Turabian StyleDjeghim, Fairouz, Hayat Bourekoua, Renata Różyło, Agata Bieńczak, Wojciech Tanaś, and Mohammed Nesreddine Zidoune. 2021. "Effect of By-Products from Selected Fruits and Vegetables on Gluten-Free Dough Rheology and Bread Properties" Applied Sciences 11, no. 10: 4605. https://doi.org/10.3390/app11104605
APA StyleDjeghim, F., Bourekoua, H., Różyło, R., Bieńczak, A., Tanaś, W., & Zidoune, M. N. (2021). Effect of By-Products from Selected Fruits and Vegetables on Gluten-Free Dough Rheology and Bread Properties. Applied Sciences, 11(10), 4605. https://doi.org/10.3390/app11104605