Several Aspects of Application of Nanodiamonds as Reinforcements for Metal Matrix Composites
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Kuznetsov, V.L.; Aleksandrov, M.N.; Zagoruiko, I.V.; Chuvilin, A.L.; Moroz, E.M.; Kolomiichuk, V.N.; Likholobov, V.A.; Brylyakov, P.M.; Sakovitch, G.V. Study of Ultra Disperse Diamond Obtained Using Explosion Energy. Carbon 1991, 29, 665–668. [Google Scholar] [CrossRef]
- Basso, L.; Cazzanelli, M.; Orlandi, M.; Miotello, A. Nanodiamonds: Synthesis and Application in Sensing, Catalysis, and the Possible Connection with Some Processes Occurring in Space. Appl. Sci. 2020, 10, 4094. [Google Scholar] [CrossRef]
- Mochalin, V.N.; Shenderova, O.; Ho, D.; Gogotsi, Y. The properties and applications of nanodiamonds. Nat. Nanotechnol. 2012, 7, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Balakin, S.; Dennison, N.R.; Klemmed, B.; Spohn, J.; Cuniberti, G.; Römhildt, L.; Opitz, J. Immobilization of Detonation Nanodiamonds on Macroscopic Surfaces. Appl. Sci. 2019, 9, 1064. [Google Scholar] [CrossRef]
- Adorinni, S.; Cringoli, M.C.; Perathoner, S.; Fornasiero, P.; Marchesan, S. Green Approaches to Carbon Nanostructure-Based Biomaterials. Appl. Sci. 2021, 11, 2490. [Google Scholar] [CrossRef]
- Popov, V.A. Non-agglomerated nanodiamonds inside metal matrix. Fuller. Nanotub. Carbon Nanostruct. 2020, 28, 61–65. [Google Scholar] [CrossRef]
- Popov, V. The impact of the diamond reinforcing particle size on their interaction with the aluminum matrix of composites in the course of heating. Surf. Interface Anal. 2018, 50, 1106–1109. [Google Scholar] [CrossRef]
- Popov, V.A.; Burghammer, M.; Rosenthal, M.; Kotov, A. In situ synthesis of TiC nano-reinforcements in aluminum matrix composites during mechanical alloying. Compos. Part B Eng. 2018, 145, 57–61. [Google Scholar] [CrossRef]
- Tinwala, H.; Wairkar, S. Production, surface modification and biomedical applications of nanodiamonds: A sparkling tool for theranostics. Mater. Sci. Eng. C 2019, 97, 913–931. [Google Scholar] [CrossRef]
- Shvidchenko, A.V.; Eidelman, E.D.; Vul, A.Y.; Kuznetsov, N.M.; Stolyarova, D.Y.; Belousov, S.I.; Chvalun, S.N. Colloids of detonation nanodiamond particles for advanced applications. Adv. Colloid Interface Sci. 2019, 268, 64–81. [Google Scholar] [CrossRef]
- Mironov, E.; Koretz, A.; Petrov, E. Detonation synthesis ultradispersed diamond structural properties investigation by infrared absorption. Diam. Relat. Mater. 2002, 11, 872–876. [Google Scholar] [CrossRef]
- Volkov, D.S.; Proskurnin, M.A.; Korobov, M.V. Elemental analysis of nanodiamonds by inductively-coupled plasma atomic emission spectroscopy. Carbon 2014, 74, 1–13. [Google Scholar] [CrossRef]
- Krueger, A.; Boedeker, T. Deagglomeration and functionalisation of detonation nanodiamond with long alkyl chains. Diam. Relat. Mater. 2008, 17, 1367–1370. [Google Scholar] [CrossRef]
- Aleksenskiy, A.E.; Eydelman, E.D.; Vul, A.Y. Deagglomeration of Detonation Nanodiamonds. Nanosci. Nanotechnol. Lett. 2011, 3, 68–74. [Google Scholar] [CrossRef]
- Shvidchenko, A.V.; Dideikin, A.T.; Zhukov, A.N. Counterion condensation in hydrosols of single-crystalline detonation nanodiamond particles obtained by air annealing of their agglomerates. Colloid J. 2017, 79, 567–569. [Google Scholar] [CrossRef]
- Kuznetsov, V.L.; Chuvilin, A.L.; Butenko, Y.V.; Mal’kov, I.Y.; Titov, V.M. Onion-like carbon from ultra-disperse diamond. Chem. Phys. Lett. 1994, 222, 343–348. [Google Scholar] [CrossRef]
- Mykhaylyk, O.O.; Solonin, Y.M.; Batchelder, D.N.; Brydson, R. Transformation of nanodiamond into carbon onions: A comparative study by high-resolution transmission electron microscopy, electron energy-loss spectroscopy, x-ray diffraction, small-angle x-ray scattering, and ultraviolet Raman spectroscopy. J. Appl. Phys. 2005, 97, 074302. [Google Scholar] [CrossRef]
- Kuznetsov, V.; Moseenkov, S.; Ischenko, A.; Romanenko, A.; Buryakov, T.; Anikeeva, O.; Maksimenko, S.; Kuzhir, P.; Bychanok, D.; Gusinski, A.; et al. Controllable electromagnetic response of onion-like carbon based materials. Phys. Status Solidi B 2008, 245, 2051–2054. [Google Scholar] [CrossRef]
- Popov, V.A.; Egorov, A.V.; Savilov, S.V.; Lunin, V.V.; Kirichenko, A.N.; Denisov, V.N.; Blank, V.D.; Vyaselev, O.M.; Sagalova, T.B. Features of the Transformation of Detonation Nanodiamonds into Onion-Like Carbon Nanoparticles. J. Surf. Investig. X-ray Synchrotron Neutron Tech. 2013, 7, 1034–1043. [Google Scholar] [CrossRef]
- Liang, Y.; Meinhardt, T.; Jarre, G.; Ozawa, M.; Krueger, A. Deagglomeration and surface modification of thermally annealed nanoscale diamond. J. Colloid Interface Sci. 2011, 354, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Petit, T.; Arnault, J.-C.; Girard, H.A.; Sennour, M.; Bergonzo, P. Early stages of surface graphitization on nanodiamond probed by x-ray photoelectron spectroscopy. Phys. Rev. B 2011, 84, 233407. [Google Scholar] [CrossRef]
- Qiao, Z.; Li, J.; Zhao, N.; Shi, C.; Nash, P. Graphitization and microstructure transformation of nanodiamond to onion-like carbon. Scr. Mater. 2006, 54, 225–229. [Google Scholar] [CrossRef]
- Butenko, Y.V.; Kuznetsov, V.L.; Chuvilin, A.L.; Kolomiichuk, V.N.; Stankus, S.V.; Khairulin, R.A.; Segall, B. Kinetics of the graphitization of dispersed diamonds at “low” temperatures. J. Appl. Phys. 2000, 88, 4380. [Google Scholar] [CrossRef]
- Khalid, F.A.; Beffort, O.; Klotz, U.E.; Gasser, P. Microstructure and interfacial characteristics of aluminium–diamond composite materials. Diam. Relat. Mater. 2004, 13, 393–400. [Google Scholar] [CrossRef]
- Popov, V.A.; Shelekhov, E.V.; Vershinina, E.V. Influence of Reinforcing Nonagglomerated Nanodiamond Particles on Metal Matrix Nanocomposite Structure Stability in the Course of Heating. Eur. J. Inorg. Chem. 2016, 2016, 2122–2124. [Google Scholar] [CrossRef]
- Popov, V. X-ray micro-absorption enhancement for non-agglomerated nanodiamonds in mechanically alloyed aluminium matrix composites. Phys. Status Solidi A 2015, 212, 2722–2726. [Google Scholar] [CrossRef]
- Benjamin, J.S.; Volin, T.E. The Mechanism of mechanical alloying. Met. Trans. 1974, 5, 1929–1934. [Google Scholar] [CrossRef]
- Ruiz, M.M.; Olvera, J.N.R.; Davila, R.M.; Reyes, L.G.; Febles, V.G.; Martinez, J.G.; Arceo, L.G.D.B. Synthesis and Characterization of Mechanically Alloyed, Nanostructured Cubic MoW Carbide. Appl. Sci. 2020, 10, 9114. [Google Scholar] [CrossRef]
- Nunes, D.; Livramento, V.; Mardolcar, U.V. Tungsten-nanodiamonds composite powder produced by ball milling. J. Nucl. Mater. 2012, 426, 115–119. [Google Scholar] [CrossRef][Green Version]
- Fedorov, V.B.; Shorshorov, M.K.; Khakimova, D.K. Carbon and Its Interaction with Metals; Metallurgy: Moscow, Russia, 1978. [Google Scholar]
- Etter, T.; Schulz, P.; Weber, M.; Metz, J.; Uggowitzer, P.J. Aluminium carbide formation in interpenetrating graphite/aluminium composites. Mater. Sci. Eng. A 2007, 448, 1–6. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popov, V. Several Aspects of Application of Nanodiamonds as Reinforcements for Metal Matrix Composites. Appl. Sci. 2021, 11, 4695. https://doi.org/10.3390/app11104695
Popov V. Several Aspects of Application of Nanodiamonds as Reinforcements for Metal Matrix Composites. Applied Sciences. 2021; 11(10):4695. https://doi.org/10.3390/app11104695
Chicago/Turabian StylePopov, Vladimir. 2021. "Several Aspects of Application of Nanodiamonds as Reinforcements for Metal Matrix Composites" Applied Sciences 11, no. 10: 4695. https://doi.org/10.3390/app11104695
APA StylePopov, V. (2021). Several Aspects of Application of Nanodiamonds as Reinforcements for Metal Matrix Composites. Applied Sciences, 11(10), 4695. https://doi.org/10.3390/app11104695