Image Degradation Modeling for Real-World Super Resolution via Conditional Normalizing Flow
Abstract
:1. Introduction
2. Related Work
2.1. Real-World Super Resolution
2.2. Degradation Learning
2.3. Normalizing Flow
3. Materials and Methods
3.1. Image Degradation Formulation
3.2. Image Degradation Modeling via Conditional Normalizing Flow
3.3. Degraded Image Generation
3.4. Model Architecture
3.5. Datasets
3.6. Evaluation Metrics
3.7. Training Results
4. Experimental Results and Discussion
4.1. Evaluation on Image Degradation Stochasticity
4.2. Evaluation on Image Degradation Modeling
4.3. Evaluation on Real-World Super Resolution
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Image Super-Resolution Using Deep Convolutional Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 295–307. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Lee, J.K.; Lee, K.M. Accurate image super-resolution using very deep convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Wang, X.; Yu, K.; Wu, S.; Gu, J.; Liu, Y.; Dong, C.; Qiao, Y.; Change Loy, C. ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks. In European Conference on Computer Vision; Springer: Cham, Switzerland, 2018; pp. 63–79. [Google Scholar]
- Zhang, Y.; Tian, Y.; Kong, Y.; Zhong, B.; Fu, Y. Residual dense network for image super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Zhang, K.; Zuo, W.; Zhang, L. Learning a single convolutional super-resolution network for multiple degradations. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3262–3271. [Google Scholar]
- Chen, C.; Xiong, Z.; Tian, X.; Zha, Z.J.; Wu, F. Camera lens super-resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Cai, J.; Zeng, H.; Yong, H.; Cao, Z.; Zhang, L. Toward real-world single image super-resolution: A new benchmark and a new model. In Proceedings of the IEEE International Conference on Computer Vision, Long Beach, CA, USA, 15–20 June 2019; pp. 3086–3095. [Google Scholar]
- Fritsche, M.; Gu, S.; Timofte, R. Frequency separation for real-world super-resolution. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Seoul, Korea, 27–28 October 2019; pp. 3599–3608. [Google Scholar]
- Ji, X.; Cao, Y.; Tai, Y.; Wang, C.; Li, J.; Huang, F. Real-world super-resolution via kernel estimation and noise injection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Seattle, WA, USA, 13–19 June 2020. [Google Scholar]
- Bell-Kligler, S.; Shocher, A.; Irani, M. Blind super-resolution kernel estimation using an internal-gan. In Advances in Neural Information Processing Systems; 2019; pp. 284–293. [Google Scholar]
- Bulat, A.; Yang, J.; Tzimiropoulos, G. To learn image super-resolution, use a gan to learn how to do image degradation first. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 185–200. [Google Scholar]
- Lim, B.; Son, S.; Kim, H.; Nah, S.; Mu Lee, K. Enhanced Deep Residual Networks for Single Image Super-Resolution. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), IEEE Computer Society, Honolulu, HI, USA, 21–26 July 2017; pp. 1132–1140. [Google Scholar]
- Wang, X.; Yu, K.; Dong, C.; Loy, C.C. Recovering realistic texture in image super-resolution by deep spatial feature transform. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Ledig, C.; Theis, L.; Huszar, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; et al. Photo-realistic single image super-resolution using a generative adversarial network. arXiv 2016, arXiv:1609.04802. [Google Scholar]
- Xu, Y.S.; Tseng, S.Y.R.; Tseng, Y.; Kuo, H.K.; Tsai, Y.M. Unified dynamic convolutional network for super-resolution with variational degradations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 12496–12505. [Google Scholar]
- Shocher, A.; Cohen, N.; Irani, M. Zero-Shot Super-Resolution Using Deep Internal Learning. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Dinh, L.; Krueger, D.; Bengio, Y. Nice: Non-linear independent components estimation. arXiv 2014, arXiv:1410.8516. [Google Scholar]
- Dinh, L.; Sohl-Dickstein, J.; Bengio, S. Density estimation using real NVP. In Proceedings of the 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, 24–26 April 2017. [Google Scholar]
- Lugmayr, A.; Danelljan, M.; Van Gool, L.; Timofte, R. Srflow: Learning the super-resolution space with normalizing flow. In European Conference on Computer Vision; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Kingma, D.P.; Dhariwal, P. Glow: Generative flow with invertible 1x1 convolutions. In Proceedings of the Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, Montreal, QC, Canada, 3–8 December 2018; pp. 10236–10245. [Google Scholar]
- Ignatov, A.; Kobyshev, N.; Timofte, R.; Vanhoey, K.; Van Gool, L. DSLR-Quality Photos on Mobile Devices with Deep Convolutional Networks. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; Volume 2017. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, R.; Isola, P.; Efros, A.A.; Shechtman, E.; Wang, O. The unreasonable effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Mittal, A.; Soundararajan, R.; Bovik, A.C. Making a ‘Completely Blind’ Image Quality Analyze. IEEE Signal Process. Lett. 2013, 20, 209–212. [Google Scholar] [CrossRef]
- Mittal, A.; Moorthy, A.K.; Bovik, A.C. Referenceless image spatial quality evaluation engine. In Proceedings of the 45th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 6–9 November 2011; Volume 38, pp. 53–54. [Google Scholar]
- Venkatanath, N.; Praneeth, D.; Bh, M.C.; Channappayya, S.S.; Medasani, S.S. Blind image quality evaluation using perception based features. In Proceedings of the 2015 Twenty First National Conference on Communications (NCC), Mumbai, India, 27 February–1 March 2015; pp. 1–6. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; Lerer, A. Automatic differentiation in PyTorch. In Proceedings of the Adv. Neural Information Processing Systems Workshop Autodiff, Long Beach, CA, USA, 9 December 2015; pp. 1–4. [Google Scholar]
Datasets | Number | Avg. Resolution | Format | |
---|---|---|---|---|
HR | LR | |||
DF2K | 3450 | (1446, 1942) | - | PNG |
RealSR-Train | 459 | (1312, 1527) | (328, 381) | PNG |
RealSR-Test | 100 | (1247, 1569) | (312, 392) | PNG |
DPED-Train | 5614 | - | (768, 1024) | PNG |
DPED-Test | 100 | - | (256, 511) | PNG |
Method | PSNR (dB) ↑ | SSIM ↑ | LPIPS ↓ |
---|---|---|---|
Bicubic | 29.16 | 0.901 | 0.150 |
KernelGAN | 30.01 | 0.928 | 0.077 |
DSGAN | 32.23 | 0.953 | 0.049 |
baselineCNN | 34.00 | 0.963 | 0.038 |
IDFlow | 33.44 | 0.959 | 0.042 |
SR Model | PSNR (dB) ↑ | SSIM ↑ | LPIPS ↓ |
---|---|---|---|
Bicubic-SR | 25.99 | 0.735 | 0.443 |
K-ZSSR | 23.07 | 0.645 | 0.352 |
DSGAN-SR | 24.29 | 0.644 | 0.353 |
baselineCNN-SR | 23.96 | 0.650 | 0.437 |
IDFlow-SR | 26.90 | 0.783 | 0.282 |
SR Method | NIQE ↓ | BRISQUE ↓ | PIQE ↓ |
---|---|---|---|
RRDBNet | 7.01 | 55.99 | 77.54 |
SRFlow | 4.20 | 21.76 | 17.71 |
ESRGAN | 4.02 | 19.63 | 16.09 |
K-ZSSR | 8.15 | 58.73 | 80.67 |
DSGAN | 3.5 | 11.34 | 12.06 |
noisyRealSR | 5.39 | 32.09 | 42.85 |
IDFlow-GAN | 3.76 | 7.95 | 14.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, W.; Chen, R.; Zhou, Q.; Liu, F. Image Degradation Modeling for Real-World Super Resolution via Conditional Normalizing Flow. Appl. Sci. 2021, 11, 4735. https://doi.org/10.3390/app11114735
Xu W, Chen R, Zhou Q, Liu F. Image Degradation Modeling for Real-World Super Resolution via Conditional Normalizing Flow. Applied Sciences. 2021; 11(11):4735. https://doi.org/10.3390/app11114735
Chicago/Turabian StyleXu, Wang, Renwen Chen, Qinbang Zhou, and Fei Liu. 2021. "Image Degradation Modeling for Real-World Super Resolution via Conditional Normalizing Flow" Applied Sciences 11, no. 11: 4735. https://doi.org/10.3390/app11114735
APA StyleXu, W., Chen, R., Zhou, Q., & Liu, F. (2021). Image Degradation Modeling for Real-World Super Resolution via Conditional Normalizing Flow. Applied Sciences, 11(11), 4735. https://doi.org/10.3390/app11114735