Vibrations of Nonlinear Elastic Structure Excited by Compressible Flow
Abstract
1. Introduction
2. Compressible Flow
2.1. Continuous Flow Problem
2.2. Discrete Flow Problem
3. Dynamic Elasticity Problem
3.1. Discretization of the Elasticity Problem
3.2. STDGM for the Structural Problem
4. Fluid–Structure Coupling Implementation
4.1. Transmission Conditions
4.2. Construction of the ALE Mapping
4.3. Coupling Procedure
- Let us assume the approximate solutions of the flow problem and the deformation of the structure on the time level are known.
- Set , and start the iterations:
- (a)
- Compute the stress tensor and the aerodynamic force loading the structure and transform it to the interface .
- (b)
- Solve the elasticity problem, compute the deformation at time and approximate the flow domain .
- (c)
- Determine the ALE mapping and approximate the domain velocity .
- (d)
- Solve the flow problem on the approximation of .
- (e)
- If the variation of the displacement
5. Realization of the Discrete Nonlinear Elasticity Problem
5.1. Newton Method
- Compute the residual .
- Stop iterations with , if .
- Compute from
- Update , set and go to 1.
5.2. Important Ingredients of the Newton Method Implementation
5.3. Derivatives in the Case of the Neo-Hookean Material
5.4. Derivatives in the Case of the St. Venant–Kirchhoff Material
6. Test of the STDGM for the Dynamic Elasticity
7. FSI Numerical Experiments Using STDGM
inlet velocity | m s, |
dynamic viscosity | kg m s, |
inlet density | kg m, |
initial outlet pressure | Pa, |
Reynolds number | , |
heat conduction coeff. | kg m s K, |
specific heat | m s K, |
Poisson adiab. const. | . |
Comparison of the FSI Results for Linear and Two Nonlinear Elasticity Models
8. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALE | arbitrary Lagrangian–Eulerian (method) |
DGM | discontinuous Galerkin method |
FE | finite element |
FSI | fluid–structure interaction |
N-S | Navier–Stokes |
STDGM | space-time discontinuous Galerkin method |
VFs | vocal folds |
References
- Fung, Y.C. An Introduction to the Theory of Aeroelaticity; Dover Publications: New York, NY, USA, 1969. [Google Scholar]
- Dowell, E.H. Aeroelasticity of Plates and Shells; Kluwer: Dordrecht, The Netherlands, 1974. [Google Scholar]
- Naudasher, E.; Rockwell, D. Flow-Induced Vibrations; A. A. Balkema: Rotterdam, The Netherlands, 1994. [Google Scholar]
- Dowell, E.H. A modern Course in Aeroelaticity; Kluwer: Dordrecht, The Netherlands, 1995. [Google Scholar]
- Bisplinghoff, R.L.; Ashley, H.; Halfman, R.L. Aeroelaticity; Dover: New York, NY, USA, 1996. [Google Scholar]
- Paidoussis, M.P. Fluid-Structure Interactions. Slender Structures and Axial Flow, Vol I.; Academic Press: San Diego, CA, USA, 1998. [Google Scholar]
- Paidoussis, M.P. Fluid-Structure Interactions. Slender Structures and Axial Flow, Vol II.; Academic Press: London, UK, 2004. [Google Scholar]
- Mittal, R.; Erath, B.D.; Plesniak, M.W. Fluid dynamics of human phonation and speech. Annu. Rev. Fluid Mech. 2013, 45, 437–467. [Google Scholar] [CrossRef]
- Seo, J.H.; Mittal, R. A higher-order immersed boundary method for acoustic wave scattering and low-Mach number flow-induced sound in complex geometries. J. Comput. Phys. 2011, 230, 1000–1019. [Google Scholar] [CrossRef]
- Zheng, X.; Bielamowicz, S.; Luo, H.; Mittal, R. A computational study of the effect of false vocal folds on glottal flow and vocal fold vibration during phonation. Ann. Biomed. Eng. 2009, 37, 625–642. [Google Scholar] [CrossRef]
- Dolejší, V.; Feistauer, M. Discontinuous Galerkin Method—Analysis and Applications to Compressible Flow; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Pořízková, P.; Kozel, K.; Horáček, J. Flows in convergent channel: Comparison of numerical results of different mathematical models. Computing 2013, 95, 573–585. [Google Scholar] [CrossRef]
- Šidlof, P.; Zorner, S.; Huppe, A. A hybrid approach to the computational aeroacoustics of human voice production. Biomech. Model. Mechanobiol. 2014, 14, 473–488. [Google Scholar] [CrossRef] [PubMed]
- Ishizaka, K.; Flanagan, J.L. Synthesis of voiced sounds from a two-mass model of the vocal cords. Bell Syst. Tech. 1972, 51, 1233–1268. [Google Scholar] [CrossRef]
- Liljencrants, J. A translating and rotating mass model of the vocal folds. Speech Transm. Lab. Q. Prog. Status Rep. 1991, 1, 1–18. [Google Scholar]
- Titze, I.R. Phonation threshold pressure: A missing link in glottal aerodynamics. J. Acoust. Soc. Am. 1992, 91, 2928–2934. [Google Scholar] [CrossRef]
- Story, B.H.; Titze, I.R. Voice simulation with a body cover model of the vocal folds. J. Acoust. Soc. Am. 1995, 97, 1249–1260. [Google Scholar] [CrossRef]
- Sváček, P.; Horáček, J. Finite element approximation of flow induced vibrations of human vocal folds model: Effects of inflow boundary conditions and the length of subglottal and supraglottal channel on phonation onset. Appl. Math. Comput. 2018, 319, 178–194. [Google Scholar] [CrossRef]
- Feistauer, M.; Kučera, V.; Prokopová, J. Discontinuous Galerkin solution of compressible flow in time-dependent domains. Math. Comput. Simul. 2010, 80, 1612–1623. [Google Scholar] [CrossRef]
- Hasnedlová, J.; Feistauer, M.; Horáček, J.; Kosík, A.; Kučera, V. Numerical simulation of fluid-structure interaction of compressible flow and elastic structure. Computing 2013, 95, 343–361. [Google Scholar] [CrossRef]
- Feistauer, M.; Horáček, J.; Sváček, P. Numerical Simulation of Fluid-Structure Interaction Problems with Applications to Flow in Vocal Folds. In Fluid-Structure Interaction and Biomedical Applications; Bodnár, T., Galdi, G.P., Nečasová, Š., Eds.; Springer: Basel, Switzerland, 2014. [Google Scholar]
- Hatrmann, R.; Houston, P. Symmetric interionr penalty DG methods for the compressible Navier-Stokes equations I: Method formulation. Int. J. Numer. Anal. Model. 2006, 1, 1–20. [Google Scholar]
- Dumbser, M. Arbitrary high order PNPM schemes on unstructured meshes for the compressible Navier-Stokes equations. Comput. Fluids 2010, 39, 60–76. [Google Scholar] [CrossRef]
- Dolejší, V. On the discontinuous Galerkin method for the numerical solution of the Navier—Stokes equations. Int. J. Numer. Methods Fluids 2004, 45, 1083–1106. [Google Scholar] [CrossRef]
- Dolejší, V. Semi-implicit interior penalty discontinuous Galerkin methods for viscous compressible flows. Commun. Comput. Phys. 2008, 4, 231–274. [Google Scholar]
- Česenek, J.; Feistauer, M.; Kosík, A. DGFEM for the analysis of airfoil vibrations induced by compressible flow. ZAMM Z. Angew. Math. Mech. 2013, 93, 387–402. [Google Scholar] [CrossRef]
- Feistauer, M.; Hasnedlová-Prokopová, J.; Horáček, J.; Kosík, A.; Kučera, V. DGFEM for dynamical systems describing interaction of compressible fluid and structures. J. Comput. Appl. Math. 2013, 254, 17–30. [Google Scholar] [CrossRef]
- Kosík, A. Fluid-Structure Interaction. Ph.D. Thesis, Department of Numerical Mathematics, Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic, 2016. [Google Scholar]
- Ciarlet, P.G. The Finite Element Method for Elliptic Problems; North-Holland: Amsterdam, The Netherlands, 1979. [Google Scholar]
- Feistauer, M.; Felcman, J.; Straškraba, I. Mathematical and Computational Methods for Compressible Flow; Clarendon Press: Oxford, UK, 2003. [Google Scholar]
- Feistauer, M.; Kučera, V. On a robust discontinuous Galerkin technique for the solution of compressible flow. J. Comput. Phys. 2007, 224, 208–221. [Google Scholar] [CrossRef]
- Ciarlet, P.G. Mathematical Elasticity, Volume I, Three-Dimensional Elasticity; Volume 20 of Studies in Mathematics and Its Applications; Elsevier Science Publishers B.V.: Amsterdam, The Netherlands, 1988. [Google Scholar]
- Deuflhard, P. Newton Methods for Nonlinear Problems, Affine Invariance and Adaptive Algorithms; Springer Series in Computational Mathematics 35; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Davis, T.A.; Duff, I.S. A combined unifrontal/multifrontal method for unsymmetric sparse matrices. ACM Trans. Math. Softw. 1999, 25, 1–19. [Google Scholar] [CrossRef]
- Saad, Y.; Schultz, M.H. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 1986, 7, 856–869. [Google Scholar] [CrossRef]
- Young, Z.; Mavriplis, D.J. Unstructured dynamic meshes with higher-order time integration schemes for the unsteady Navier-Stokes equations. In Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 1222, Reno, NV, USA, 10–13 January 2005. [Google Scholar]
- Badia, S.; Codina, R. On some fluid-structure iterative algorithms using pressure segregation methods. Application to aeroelesticity. Int. J. Numer. Methods Eng. 2007, 72, 46–71. [Google Scholar] [CrossRef]
- Fernandez, M.A.; Moubachir, M. A Newton method using exact jacobians for solving fluid-structure coupling. Comput. Struct. 2005, 83, 127–142. [Google Scholar] [CrossRef]
- Richter, T. Goal oriented error estimation for fluid-structure interaction problems. Comput. Methods Appl. Mech. Eng. 2012, 223–224, 28–42. [Google Scholar] [CrossRef]
- Turek, S.; Hron, J. Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow. In Fluid-Structure Interaction: Modelling, Simulation, Optimisation; Bungartz, H.J., Schäfer, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 37–385. [Google Scholar]
Method | f [Hz] | f [Hz] | |||
---|---|---|---|---|---|
ref | |||||
STDGM | 0.04 | ||||
STDGM | 0.02 | ||||
STDGM | 0.01 | ||||
STDGM | 0.005 |
Method | f [Hz] | f [Hz] | |||
---|---|---|---|---|---|
STDGM | 0.04 | ||||
STDGM | 0.02 | ||||
STDGM | 0.01 | ||||
STDGM | 0.005 |
Num. of Elem. | f [Hz] | f [Hz] | |||
---|---|---|---|---|---|
ref | |||||
722 | 0.02 | ||||
1348 | 0.02 | ||||
2822 | 0.02 |
Layer | ||||
---|---|---|---|---|
1. layer (orange) | 17,143 | 4285 | ||
2. layer (yellow) | 11,430 | 2857 | ||
3. layer (blue) | 33,110 | 335 | ||
4. layer (red) | 142,857 | 35,714 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balázsová, M.; Feistauer, M.; Horáček, J.; Kosík, A. Vibrations of Nonlinear Elastic Structure Excited by Compressible Flow. Appl. Sci. 2021, 11, 4748. https://doi.org/10.3390/app11114748
Balázsová M, Feistauer M, Horáček J, Kosík A. Vibrations of Nonlinear Elastic Structure Excited by Compressible Flow. Applied Sciences. 2021; 11(11):4748. https://doi.org/10.3390/app11114748
Chicago/Turabian StyleBalázsová, Monika, Miloslav Feistauer, Jaromír Horáček, and Adam Kosík. 2021. "Vibrations of Nonlinear Elastic Structure Excited by Compressible Flow" Applied Sciences 11, no. 11: 4748. https://doi.org/10.3390/app11114748
APA StyleBalázsová, M., Feistauer, M., Horáček, J., & Kosík, A. (2021). Vibrations of Nonlinear Elastic Structure Excited by Compressible Flow. Applied Sciences, 11(11), 4748. https://doi.org/10.3390/app11114748