Chemical Profiling, Antioxidant, and Antimicrobial Activity against Drug-Resistant Microbes of Essential Oil from Withania frutescens L.
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phytochemical Composition of Essential Oil
2.2. Antioxidant Activity
2.3. Antibacterial Activity of Essential Oil
2.4. Antifungal Activity
3. Materials and Methods
3.1. Chemicals
3.2. Selection and Identification of Plant Material
3.3. Extraction of Essential Oils
3.4. Preparation of Hydrolat
3.5. Chemical Characterization of Essential Oil by GC/MS
3.6. In Vitro Antioxidant Activity of Essential Oils
3.7. Diphenyl-1-Picrylhydrazyl Assay
3.8. Ferric Reducing Antioxidant Power Test
3.9. Total Antioxidant Capacity Test
3.10. Beta-Carotene Discoloration Test
3.11. Antibacterial Activity
3.12. Antifungal Activity
3.13. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jenkins, D.R. Nosocomial Infections and Infection Control. Medicine 2017, 45, 629–633. [Google Scholar] [CrossRef]
- Maoulainine, F.M.R.; Elidrissi, N.S.; Chkil, G.; Abba, F.; Soraa, N.; Chabaa, L.; Amine, M.; Aboussad, A. Épidémiologie De L’Infection Nosocomiale Bactérienne Dans Un Service De Réanimation Néonatale Marocain. Arch. Pediatrie 2014, 21, 938–943. [Google Scholar] [CrossRef]
- Chan, M. A Global Health Guardian: Climate Change, Air Pollution and Antimicrobial Resistance. In Ten Years Public Health 2007–2017; World Health Organization: Geneva, Switzerland, 2017; pp. 135–145. ISBN 978-92-4-151244-2. Available online: https://www.who.int/publications/10-year-review/chapter-guardian.pdf (accessed on 4 January 2021).
- Rossiter, S.E.; Fletcher, M.H.; Wuest, W.M. Natural Products as Platforms to Overcome Antibiotic Resistance. Chem. Rev. 2017, 117, 12415–12474. [Google Scholar] [CrossRef] [PubMed]
- Gherraf, N.; Zellagui, A.; Kabouche, A.; Lahouel, M.; Salhi, R.; Rhouati, S. Chemical Constituents and Antimicrobial Activity of Essential Oils of Ammodaucus Leucotricus. Arab. J. Chem. 2017, 10, S2476–S2478. [Google Scholar] [CrossRef] [Green Version]
- Siddique, S.; Parveen, Z.; Firdaus-e-Bareen, X.; Mazhar, S. Chemical Composition, Antibacterial and Antioxidant Activities of Essential Oils from Leaves of Three Melaleuca Species of Pakistani Flora. Arab. J. Chem. 2016. [Google Scholar] [CrossRef]
- Owen, L.; Laird, K. Synchronous Application of Antibiotics and Essential Oils: Dual Mechanisms of Action as a Potential Solution to Antibiotic Resistance. Crit. Rev. Microbiol. 2018, 44, 414–435. [Google Scholar] [CrossRef] [PubMed]
- Shriram, V.; Khare, T.; Bhagwat, R.; Shukla, R.; Kumar, V. Inhibiting Bacterial Drug Efflux Pumps via Phyto-Therapeutics to Combat Threatening Antimicrobial Resistance. Front. Microbiol. 2018, 9, 2990. [Google Scholar] [CrossRef] [PubMed]
- Ten Threats to Global Health in 2019. Available online: https://www.who.int/news-room/spotlight/ten-threats-to-global-health-in-2019 (accessed on 9 January 2021).
- Buckner, M.M.C.; Ciusa, M.L.; Piddock, L.J.V. Strategies to Combat Antimicrobial Resistance: Anti-Plasmid and Plasmid Curing. FEMS Microbiol. Rev. 2018, 42, 781–804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venter, H.; Henningsen, M.L.; Begg, S.L. Antimicrobial Resistance in Healthcare, Agriculture and the Environment: The Biochemistry behind the Headlines. Essays Biochem. 2017, 61, 1–10. [Google Scholar] [CrossRef]
- Islam, S.; Aldstadt, J.; Aga, D. Global Antimicrobial Resistance: A Complex and Dire Threat with Few Definite Answers. Trop. Med. Int. Health 2019, 24, 658–662. [Google Scholar] [CrossRef]
- O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. 2016. Available online: https://www.biomerieuxconnection.com/wp-content/uploads/2018/04/Tackling-Drug-Resistant-Infections-Globally_-Final-Report-and-Recommendations.pdf (accessed on 4 January 2021).
- Mapara, N.; Sharma, M.; Shriram, V.; Bharadwaj, R.; Mohite, K.C.; Kumar, V. Antimicrobial Potentials of Helicteres Isora Silver Nanoparticles against Extensively Drug-Resistant (XDR) Clinical Isolates of Pseudomonas Aeruginosa. Appl. Microbiol. Biotechnol. 2015, 99, 10655–10667. [Google Scholar] [CrossRef]
- Mulani, M.S.; Kamble, E.E.; Kumkar, S.N.; Tawre, M.S.; Pardesi, K.R. Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review. Front. Microbiol. 2019, 10, 539. [Google Scholar] [CrossRef]
- Thomas, V.M.; Brown, R.M.; Ashcraft, D.S.; Pankey, G.A. Synergistic Effect between Nisin and Polymyxin B against Pandrug-Resistant and Extensively Drug-Resistant Acinetobacter Baumannii. Int. J. Antimicrob. Agents 2019, 53, 663–668. [Google Scholar] [CrossRef]
- Maenza, J.R.; Merz, W.G.; Romagnoli, M.J.; Keruly, J.C.; Moore, R.D.; Gallant, J.E. Infection Due to Fluconazole-Resistant Candida in Patients with AIDS: Prevalence and Microbiology. Clin. Infect. Dis. 1997, 24, 28–34. [Google Scholar] [CrossRef] [Green Version]
- Bourhia, M.; Laasri, F.E.; Aourik, H.; Boukhris, A.; Ullah, R.; Bari, A.; Ali, S.S.; El Mzibri, M.; Benbacer, L.; Gmouh, S. Antioxidant and Antiproliferative Activities of Bioactive Compounds Contained in Rosmarinus Officinalis Used in the Mediterranean Diet. Evid. Based Complement. Altern. Med. 2019, 2019, 7623830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamal, B. The Traditional Moroccan Pharmacopee, Ancient Arab Medicine and Popular Knowledge; IBIS Press: Paris, France, 1998. [Google Scholar]
- El Moussaoui, A.; Jawhari, F.Z.; Bourhia, M.; Maliki, I.; Sounni, F.; Mothana, R.A.; Bousta, D.; Bari, A. Withania Frutescens: Chemical Characterization, Analgesic, Anti-Inflammatory, and Healing Activities. Open Chem. 2020. [Google Scholar] [CrossRef]
- EL Moussaoui, A.; Jawhari, F.; EL Ouahdani, K.; Es-Safi, I.; Bousta, D.; Bari, A. Valorization of the Pharmacological Potential of Phytochemical Compounds Contained in the Crude Extract of the Root of a Plant of Withania Frutescens L. Phytothérapie 2019. [Google Scholar] [CrossRef]
- El Moussaoui, A.; Jawhari, F.Z.; Almehdi, A.M.; Elmsellem, H.; Fikri Benbrahim, K.; Bousta, D.; Bari, A. Antibacterial, Antifungal and Antioxidant Activity of Total Polyphenols of Withania Frutescens L. Bioorg. Chem. 2019, 93. [Google Scholar] [CrossRef] [PubMed]
- Moussaoui, A.E.L.; Bourhia, M.; Jawhari, F.Z.; Es-safi, I.; Ali, S.S.; Bari, A.; Mahmood, H.M.; Bousta, D.; Bari, A. Withania Frutescens. L Extract: Phytochemical Characterization and Acute and Repeated Dose 28-Day Oral Toxicity Studies in Mice. BioMed Res. Int. 2020, 2020, 1976298. [Google Scholar] [CrossRef] [PubMed]
- EL Moussaoui, A.; Bourhia, M.; Jawhari, F.Z.; Mechchate, H.; Slighoua, M.; Bari, A.; Ullah, R.; Mahmood, H.M.; Ali, S.S.; Ibenmoussa, S.; et al. Phytochemical Identification, Acute, and Sub-Acute Oral Toxicity Studies of the Foliar Extract of Withania Frutescens. Molecules 2020, 25, 4528. [Google Scholar] [CrossRef] [PubMed]
- El Moussaoui, A.; Jawhari, F.Z.; Bousta, D.; Bari, M. Phytochemical characterization and antioxidant activity of the northern moroccan species: Withania frutescens L. Asian J. Pharm. Clin. Res. 2019, 12, 276–279. [Google Scholar] [CrossRef] [Green Version]
- Hay, Y.-O.; Abril-Sierra, M.A.; Sequeda-Castañeda, L.G.; Bonnafous, C.; Raynaud, C. Evaluation of Combinations Essential Oils and with Evaluation of Combinations Essential Oils and with Hydrosols on Antimicrobial and Antioxidant Activities. J. Pharm. Pharmacogn. Res. 2018, 6, 216–230. [Google Scholar]
- Cutillas, A.B.; Carrasco, A.; Martinez-Gutierrez, R.; Tomas, V.; Tudela, J. Thyme Essential Oils from Spain: Aromatic Profile Ascertained by GC–MS, and Their Antioxidant, Anti-Lipoxygenase and Antimicrobial Activities. J. Food Drug Anal. 2018, 26, 529–544. [Google Scholar] [CrossRef] [Green Version]
- Zuccarini, P. Camphor: Risks and Benefits of a Widely Used Natural Product. J. Appl. Sci. Environ. Manag. 2009, 13, 69–74. [Google Scholar] [CrossRef] [Green Version]
- Hamidpour, R.; Hamidpour, S.; Hamidpour, M.; Shahlari, M. Camphor (Cinnamomum Camphora), a Traditional Remedy with the History of Treating Several Diseases. Int. J. Case Rep. Images 2013, 4, 86–89. [Google Scholar] [CrossRef] [Green Version]
- Sherkheli, M.A.; Benecke, H.; Doerner, J.F.; Kletke, O.; Vogt-Eisele, A.K.; Gisselmann, G.; Hatt, H. Monoterpenoids Induce Agonist-Specific Desensitization of Transient Receptor Potential Vanilloid-3 (TRPV3) Ion Channels. J. Pharm. Pharm. Sci. 2009, 12, 116–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durazzo, A. Study Approach of Antioxidant Properties in Foods: Update and Considerations. Foods 2017, 6, 17. [Google Scholar] [CrossRef] [Green Version]
- Bouhdid, S.; Skali, S.N.; Idaomar, M.; Zhiri, A.; Baudoux, D.; Amensour, M.; Abrini, J. Antibacterial and Antioxidant Activities of Origanum Compactum Essential Oil. Afr. J. Biotechnol. 2008, 7, 1563–1570. [Google Scholar] [CrossRef]
- Gülçin, Ì.; Şat, I.G.; Beydemir, Ş.; Elmastaş, M.; Küfrevioǧlu, Ö.I. Comparison of Antioxidant Activity of Clove (Eugenia Caryophylata Thunb) Buds and Lavender (Lavandula Stoechas, L.). Food Chem. 2004, 87, 393–400. [Google Scholar] [CrossRef]
- Chun, S.S.; Vattem, D.A.; Lin, Y.T.; Shetty, K. Phenolic Antioxidants from Clonal Oregano (Origanum Vulgare) with Antimicrobial Activity against Helicobacter Pylori. Process. Biochem. 2005, 40, 809–816. [Google Scholar] [CrossRef]
- Zhuang, S.R.; Chen, S.L.; Tsai, J.H.; Huang, C.C.; Wu, T.C.; Liu, W.S.; Tseng, H.C.; Lee, H.S.; Huang, M.C.; Shane, G.T.; et al. Effect of Citronellol and the Chinese Medical Herb Complex on Cellular Immunity of Cancer Patients Receiving Chemotherapy/Radiotherapy. Phytother. Res. 2009, 23, 785–790. [Google Scholar] [CrossRef]
- Fayed, S.A. Antioxidant and Anticancer Activities of Citrus Reticulate (Petitgrain Mandarin) and Pelargonium Graveolens (Geranium) Essential Oils. Res. J. Agric. Biol. Sci. 2009, 5, 740–747. [Google Scholar]
- Tiwari, A.K. Imbalance in Antioxidant Defence and Human Diseases: Multiple Approach of Natural Antioxidants Therapy. Curr. Sci. 2001, 81, 1179–1187. [Google Scholar]
- El Atki, Y.; Aouam, I.; El Kamari, F.; Taroq, A.; Lyoussi, B.; Oumokhtar, B.; Abdellaoui, A. Phytochemistry, Antioxidant and Antibacterial Activities of Two Moroccan Teucrium Polium, L. Subspecies: Preventive Approach against Nosocomial Infections. Arab. J. Chem. 2019. [Google Scholar] [CrossRef]
- Delaquis, P.J.; Stanich, K.; Girard, B.; Mazza, G. Antimicrobial Activity of Individual and Mixed Fractions of Dill, Cilantro, Coriander and Eucalyptus Essential Oils. Int. J. Food Microbiol. 2002, 74, 101–109. [Google Scholar] [CrossRef]
- Lambert, R.; Skandamis, P.N.; Coote, P.J.; Nychas, G.J. A Study of the Minimum Inhibitory Concentration and Mode of Action of Oregano Essential Oil, Thymol and Carvacrol. J. Appl. Microbiol. 2001, 453–462. [Google Scholar] [CrossRef] [Green Version]
- Helander, I.M.; Alakomi, H.L.; Latva-Kala, K.; Mattila-Sandholm, T.; Pol, I.; Smid, E.J.; Gorris, L.G.M.; Von Wright, A. Characterization of the Action of Selected Essential Oil Components on Gram-Negative Bacteria. J. Agric. Food Chem. 1998, 46, 3590–3595. [Google Scholar] [CrossRef]
- Cosentino, S.; Tuberoso, C.I.G.; Pisano, B.; Satta, M.; Mascia, V.; Arzedi, E.; Palmas, F. In-Vitro Antimicrobial Activity and Chemical Composition of Sardinian Thymus Essential Oils. Lett. Appl. Microbiol. 1999, 29, 130–135. [Google Scholar] [CrossRef]
- Yu, Z.; Tang, J.; Khare, T.; Kumar, V. The Alarming Antimicrobial Resistance in ESKAPEE Pathogens: Can Essential Oils Come to the Rescue? Fitoterapia 2020, 140, 104433. [Google Scholar] [CrossRef]
- Butler, M.S.; Blaskovich, M.A.; Cooper, M.A. Antibiotics in the Clinical Pipeline at the End of 2015. J. Antibiot. 2017, 70, 3–24. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, J. Securing New Drugs for Future Generations: The Pipeline of Antibiotics. Antibiotic Resistance Threats in the United States. 2013. Available online: https://amr-review.org/sites/default/files/SECURING%20NEW%20DRUGS%20FOR%20FUTURE%20GENERATIONS%20FINAL%20WEB_0.pdf (accessed on 4 January 2021).
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological Effects of Essential Oils—A Review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Gafter-Gvili, A.; Vidal, L.; Goldberg, E.; Leibovici, L.; Paul, M. Treatment of Invasive Candidal Infections: Systematic Review and Meta-Analysis. Mayo Clin. Proc. 2008, 83, 1011–1021. [Google Scholar] [CrossRef] [PubMed]
- Kett, D.H.; Cubillos, G.F. Anidulafungin in the Treatment of Patients with Invasive Candidiasis. Int. J. Antimicrob. Agents 2008, 32, S99–S102. [Google Scholar] [CrossRef]
- Amrati, F.E.-Z.; Bourhia, M.; Saghrouchni, H.; Slighoua, M.; Grafov, A.; Ullah, R.; Ezzeldin, E.; Mostafa, G.A.; Bari, A.; Ibenmoussa, S. Caralluma Europaea (Guss.) NE Br.: Anti-Inflammatory, Antifungal, and Antibacterial Activities against Nosocomial Antibiotic-Resistant Microbes of Chemically Characterized Fractions. Molecules 2021, 26, 636. [Google Scholar] [CrossRef]
- Green, L.J.; Marder, P.; Mann, L.L.; Chio, L.-C.; Current, W.L. LY303366 Exhibits Rapid and Potent Fungicidal Activity in Flow Cytometric Assays of Yeast Viability. Antimicrob. Agents Chemother. 1999, 43, 830–835. [Google Scholar] [CrossRef] [Green Version]
- Pina-Vaz, C.; Gonçalves Rodrigues, A.; Sansonetty, F.; Martinez-De-Oliveira, J.; Fonseca, A.F.; Mårdh, P.-A. Antifungal Activity of Local Anesthetics against Candida Species. Infect. Dis. Obstet. Gynecol. 2000, 8, 124–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pina-Vaz, C.; Sansonetty, F.; Rodrigues, A.G.; Martinez-De-Oliveira, J.; Fonseca, A.F.; Mårdh, P.-A. Antifungal Activity of Ibuprofen Alone and in Combination with Fluconazole against Candida Species. J. Med. Microbiol. 2000, 49, 831–840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatograpy/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; ISBN 978-1-932633-11-4. [Google Scholar]
- Babushok, V.I.; Linstrom, P.J.; Zenkevich, I.G. Retention Indices for Frequently Reported Compounds of Plant Essential Oils. J. Phys. Chem. Ref. Data 2011, 40. [Google Scholar] [CrossRef] [Green Version]
- Tepe, B.; Daferera, D.; Sokmen, A.; Sokmen, M.; Polissiou, M. Antimicrobial and Antioxidant Activities of the Essential Oil and Various Extracts of Salvia Tomentosa Miller (Lamiaceae). Food Chem. 2005, 90, 333–340. [Google Scholar] [CrossRef]
- Moattar, F.S.; Sariri, R.; Yaghmaee, P.; Giahi, M. Enzymatic and Non-Enzymatic Antioxidants of Calamintha Officinalis Moench Extracts. J. Appl. Biotechnol. Rep. 2016, 3, 489–494. [Google Scholar]
- Mašković, P.Z.; Manojlović, N.T.; Mandić, A.I.; Mišan, A.Č.; Milovanović, I.L.; Radojković, M.M.; Cvijović, M.S.; Solujić, S.R. Phytochemical Screening and Biological Activity of Extracts of Plant Species Halacsya Sendtneri (Boiss.). Dörfl. Hem. Ind 2012, 66, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Dayal, B.; Purohit, R.M. Screening of Some Indian Essential Oils for Their Antifungal Properties. Flavour Ind. 1971, 2, 484–485. [Google Scholar]
- Gulluce, M.; Sahin, F.; Sokmen, M.; Ozer, H.; Daferera, D.; Sokmen, A.; Polissiou, M.; Adiguzel, A.; Ozkan, H. Antimicrobial and Antioxidant Properties of the Essential Oils and Methanol Extract from Mentha Longifolia, L. Ssp. Longifolia. Food Chem. 2007, 103, 1449–1456. [Google Scholar] [CrossRef]
- Remmal, A.; Bouchikhi, T.; Rhayour, K.; Ettayebi, M.; Tantaoui-Elaraki, A. Improved Method for the Determination of Antimicrobial Activity of Essential Oil in Agar Medium. J. Essent. Oil Res. 1993, 5, 179–184. [Google Scholar] [CrossRef]
Compounds | Chemical Classes | RI | Column | ||||
---|---|---|---|---|---|---|---|
HP-5MS | DB-H.WAX | ||||||
Peak | RT (min) | Obs | Lit | (%) | (%) | ||
1 | 7.84 | α-Pinene | Monoterpene (MO) | 937 | 939 | 1.03 ± 0.01 | 0.93 ± 0.01 |
2 | 8.23 | Camphene | MO | 946 | 946 | 1.07 ± 0.01 | 0.94 ± 0.02 |
3 | 10.13 | Yomogi alcohol | MO | 999 | 999 | 0.43 ± 0.01 | 0.36 ± 0.01 |
4 | 10.79 | o-Cymene | MO | 1020 | 1026 | 4.81 ± 0.02 | 4.71 ± 0.06 |
5 | 11.01 | 1,4-Cineole | MO | 1046 | 1031 | 4.11 ± 0.01 | 3.94 ± 0.01 |
6 | 11.10 | Limonene | MO | 1023 | 1029 | 0.75 ± 0.01 | Nt |
7 | 12.16 | Terpinolene | MO | 1072 | 1088 | 1.42 ± 0.01 | 1.34 ± 0.01 |
8 | 12.69 | Fenchon | MO | 1087 | 1086 | 0.91 ± 0.01 | Nt |
9 | 13.48 | α-Thujone | MO | 1105 | 1102 | 18.64 ± 0.07 | 17.45 ± 0.31 |
10 | 13.66 | Linalool | MO | 1105 | 1099 | 1.05 ± 0.01 | 1.93 ± 0.01 |
11 | 13.81 | β-Thujone | MO | 1198 | 1114 | 4.30 ± 0.04 | 5.12 ± 0.23 |
12 | 14.58 | Camphor | MO | 1143 | 1146 | 24.26 ± 0.31 | 25.41 ± 0.22 |
13 | 15.16 | Pinocarvone | MO | 1160 | 1164 | 0.95 ± 0.01 | Nt |
14 | 15.60 | Borneol | MO | 1166 | 1169 | Nt | 1.16 ± 0.11 |
15 | 15.68 | Bornyl acetate | Others (O) | 1283 | 1288 | 1.28 ± 0.01 | 1.18 ± 0.06 |
16 | 16.08 | 4-terpineol | MO | 1177 | 1177 | 0.62 ± 0.01 | Nt |
17 | 16.25 | α-Ionone | O | 1425 | 1430 | Nt | 0.88 ± 0.01 |
18 | 17.56 | Octanol acetate | MO | 1209 | 1213 | 1.65 ± 0.01 | 2.05 ± 0.14 |
19 | 17.86 | Pulegone | MO | 1237 | 1237 | 1.27 ± 0.18 | 0.92 ± 0.10 |
20 | 19.79 | Bornyl formate | O | 1595 | 1588 | 1.24 ± 0.01 | 1.44 ± 0.13 |
21 | 20.17 | Thymol | MO | 1290 | 1290 | 9.53 ± 0.8 | 9.24 ± 0.83 |
22 | 20.45 | Carvacrol | MO | 1300 | 1299 | 12.57 ± 0.97 | 13.43 ± 0.21 |
23 | 21.81 | Nepetalactone | MO | 1369 | 1360 | 0.98 ± 0.01 | Nt |
24 | 24.32 | β-Caryophyllene | Sesquiterpene (ST) | 1420 | 1419 | Nt | 0.82 ± 0.01 |
25 | 24.83 | τ-Elemene | ST | 1484 | 1438 | 0.82 ± 0.01 | 0.89 ± 0.01 |
26 | 26.12 | Germacrene D | ST | 1708 | 1485 | 0.94 ± 0.01 | Nt |
27 | 28.26 | Germacrene B | ST | 1823 | 1561 | 0.64 ± 0.01 | Nt |
28 | 28.66 | Spathulenol | ST | 1576 | 1578 | 1.12 ± 0.01 | 1.63 ± 0.08 |
29 | 28.76 | Caryophyllene oxide | ST | 1580 | 1583 | Nt | 0.62 ± 0.01 |
30 | 39.11 | Hexadecanoic acid | O | 1968 | 1968 | 0.66 ± 0.01 | 0.72 ± 0.01 |
Chemical classes | |||||||
Monoterpene (MO) | 90.35 ± 1.72 | 88.93 ± 1.67 | |||||
Sesquiterpene (ST) | 3.52 ± 0.82 | 3.96 ± 0.51 | |||||
Others (O) | 3.18 ± 74 | 4.22 ± 0.36 | |||||
Total identified (%) | 97.05 ± 1.07 | 97.11 ± 1.35 |
DPPH (IC50 µg/mL) | FRAP (µg/mL) | TAC (mg AAE/mg EO) | β-Carotene Anti-Radical Activity (%) | |
---|---|---|---|---|
Essential oil | 14.031 ± 0.012 | 4.618 ± 0.045 | 0.091 ± 0.007 | 74.141 ± 1.040 |
Hydrolat | 232.081 ± 3.047 | 8.997 ± 0.147 | 0.131 ± 0.004 | 40.850 ± 0.083 |
BHT | 11.020 ± 0.903 | 0.347 ± 0.057 | 0.047 ± 0.001 | 100 |
Quercetin | - | 0.042 ± 0.001 | 0.027 ± 0.001 | - |
Bacterial Strains | Drug Resistance |
---|---|
Klebsiella pneumoniae | AMX, CAZ, K |
Escherichia coli | CXM, AMX, CTX, K, SXT and CIP |
Pseudomonas aeruginosa | SXT et AMC |
Staphylococcus aureus | VA |
Compound | Gram-Negative Bacteria | Gram-Positive Bacteria | |||
---|---|---|---|---|---|
Escherichia coli 57 | Escherichia coli 97 | Klebsiella pneumoniae | Pseudomonas aeruginosa | Staphylococcus aureus | |
Essential oil | 24.32 ± 0.20 | 27.50 ± 0.11 | 19.71 ± 0.10 | 16.11 ± 0.21 | 26 ± 0.41 |
Hydrolat | 11.21 ± 0.13 | - | 9.23 ± 0.50 | 8 ± 0.52 | - |
Streptomycin | - | - | - | - | 9.61 ± 0.20 |
Ampicillin | - | - | - | - | - |
Compound | Gram-Negative Bacteria | Gram-Positive Bacteria | |||
---|---|---|---|---|---|
Escherichia coli 57 | Escherichia coli 97 | Klebsiella pneumoniae | Pseudomonas aeruginosa | Staphylococcus aureus | |
Essential oil | 0.006 ± 0.001 | 0.050 ± 0.004 | 0.003 ± 0.001 | 0.001 ± 0.0 | 0.012 ± 0.003 |
Hydrolat | 6.125 ± 0.541 | - | 6.125 ± 0.068 | 6.125 ± 0.046 | 6.125 ± 0.571 |
Streptomycin | 0.250 ± 0.027 | 0.500 ± 0.002 | 0.003 ± 0.001 | - | 0.062 |
Ampicillin | - | - | - | - |
Antifungal Activity by Disc Method (mm) | Antifungal Activity by the Microdilution Method (MIC in mg/mL) | |||
---|---|---|---|---|
C. albicans | S. cerevisiae | C. albicans | S. cerevisiae | |
EO | 47 ± 3.120 | 40 ± 6.450 | 0.0004 ± 0.0 | 0.0004 ± 0.0 |
Hydrolat | 9 ± 1.750 | 9 ± 1.250 | 12.500 ± 0.207 | 12.500 ± 0.310 |
Fluconazole | 21.200 ± 4.200 | 27.650 ± 2.500 | 0.400 ± 0.020 | 0.200 ± 0.010 |
Copper sulphate | 8.5 ± 0.3 | 7.25 ± 0.4 | 10 ± 0.25 | 10 ± 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
EL Moussaoui, A.; Bourhia, M.; Jawhari, F.Z.; Salamatullah, A.M.; Ullah, R.; Bari, A.; Majid Mahmood, H.; Sohaib, M.; Serhii, B.; Rozhenko, A.; et al. Chemical Profiling, Antioxidant, and Antimicrobial Activity against Drug-Resistant Microbes of Essential Oil from Withania frutescens L. Appl. Sci. 2021, 11, 5168. https://doi.org/10.3390/app11115168
EL Moussaoui A, Bourhia M, Jawhari FZ, Salamatullah AM, Ullah R, Bari A, Majid Mahmood H, Sohaib M, Serhii B, Rozhenko A, et al. Chemical Profiling, Antioxidant, and Antimicrobial Activity against Drug-Resistant Microbes of Essential Oil from Withania frutescens L. Applied Sciences. 2021; 11(11):5168. https://doi.org/10.3390/app11115168
Chicago/Turabian StyleEL Moussaoui, Abdelfattah, Mohammed Bourhia, Fatima Zahra Jawhari, Ahmad Mohammad Salamatullah, Riaz Ullah, Ahmed Bari, Hafiz Majid Mahmood, Muhammad Sohaib, Bohza Serhii, Alexander Rozhenko, and et al. 2021. "Chemical Profiling, Antioxidant, and Antimicrobial Activity against Drug-Resistant Microbes of Essential Oil from Withania frutescens L." Applied Sciences 11, no. 11: 5168. https://doi.org/10.3390/app11115168