Loaded Plyometrics and Short Sprints with Change-of-Direction Training Enhance Jumping, Sprinting, Agility, and Balance Performance of Male Soccer Players
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Testing Schedule
2.4. Statistical Analysis
3. Results
Effect of Training on Performance
4. Discussion
4.1. Effect of Training on Jump Performance
4.2. Effect of Training on Sprint Performance
4.3. Effect of Training on Change of Direction Ability
4.4. Effect of Training on Repeated Change of Direction Ability
4.5. Effect of Training on Balance Performance
4.6. Practical Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Girard, O.; Mendez-Villanueva, A.; Bishop, D. Repeated-sprint ability–Part I: Factors contributing to fatigue. Sports Med. 2011, 41, 673–694. [Google Scholar] [CrossRef]
- Del Wong, P.; Chan, G.S.; Smith, A.W. Repeated-sprint and change-of-direction abilities in physically active individuals and soccer players: Training and testing implications. J. Strength Con. Res. 2012, 26, 2324–2330. [Google Scholar] [CrossRef]
- Hader, K.; Mendez-Villanueva, A.; Ahmaidi, S.; Williams, B.K.; Buchheit, M. Changes of direction during high-intensity intermittent runs: Neuromuscular and metabolic responses. BMC Sports Sci. Med. Rehabil. 2014, 6, 2. [Google Scholar] [CrossRef] [Green Version]
- Rampinini, E.; Coutts, A.J.; Castagna, C.; Sassi, R.; Impellizzeri, F.M. Variation in top level soccer match performance. Int. J. Sports Med. 2007, 28, 1018–1024. [Google Scholar] [CrossRef] [Green Version]
- Born, D.P.; Zinner, C.; Düking, P.; Sperlich, B. Multi-directional sprint training improves change-of-direction speed and reactive agility in young highly trained soccer players. J. Sports Sci. Med. 2016, 15, 314–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Salvo, V.; Gregson, W.; Atkinson, G.; Tordoff, P.; Drust, B. Analysis of high intensity activity in Premier League soccer. Int. J. Sports Med. 2009, 30, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Mohr, M.; Krustrup, P.; Bangsbo, J. Match performance of high-standard soccer players with special reference to development of fatigue. J. Sports Sci. 2003, 21, 519–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohr, M.; Krustrup, P.; Bangsbo, J. Fatigue in soccer: A brief review. J. Sports Sci. 2005, 23, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Reilly, T.; Williams, A.M. (Eds.) Identifying talented players. In Science and Soccer; Routledg: London, UK, 2003; pp. 307–326. [Google Scholar]
- Hammami, M.; Gaamouri, N.; Suzuki, K. Effects of unloaded vs. ankle-loaded plyometric training on the physical fitness of U-17 male soccer players. Int. J. Environ. Res. Public Health 2020, 17, 7877. [Google Scholar] [CrossRef]
- Makhlouf, I.; Chaouachi, A.; Chaouachi, M.; Ben Othman, A.; Granacher, U.; Behm, D.G. Combination of agility and plyometric training provides similar training benefits as combined balance and plyometric training in young soccer players. Front. Physiol. 2018, 9, 1611. [Google Scholar] [CrossRef] [Green Version]
- Michailidis, Y.; Tabouris, A.; Metaxas, T. Effects of plyometric and directional training on physical fitness parameters in youth soccer players. Int. J. Sports Physiol. Perform. 2019, 14, 392–398. [Google Scholar] [CrossRef]
- Negra, Y.; Chaabene, H.; Sammoud, S.; Prieske, O.; Moran, J.; Ramirez-Campillo, R.; Nejmaoui, A.; Granacher, U. The increased effectiveness of loaded versus unloaded plyometric-jump training in improving muscle power, speed, change-of-direction, and kicking-distance performance in prepubertal male soccer players. Int. J. Sports Physiol. Perform. 2020, 15, 189–195. [Google Scholar] [CrossRef]
- Nicol, C.; Avela, J.; Komi, P.V. The stretch-shortening cycle: A model to study naturally occurring neuromuscular fatigue. Sports Med. 2006, 36, 977–999. [Google Scholar] [CrossRef] [PubMed]
- Taube, W.; Leukel, C.; Gollhofer, A. How neurons make us jump: The neural control of stretch-shortening cycle movements. Exerc. Sport Sci. Rev. 2012, 40, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-C.; Zhang, N. Effects of plyometric training on soccer players. Exp. Ther. Med. 2016, 12, 550–554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slimani, M.; Chamari, K.; Miarka, B.; Del Vecchio, F.B.; Chéour, F. Effects of plyometric training on physical fitness in team sport athletes: A systematic review. J. Hum. Kinet. 2016, 53, 231–247. [Google Scholar] [CrossRef] [Green Version]
- Yanci, J.; Los Arcos, A.; Camara, J.; Castillo, D.; García, A.; Castagna, C. Effects of horizontal plyometric training volume on soccer players’ performance. Res. Sports Med. 2016, 24, 308–319. [Google Scholar] [CrossRef]
- Coratella, G.; Beato, M.; Schena, F. The specificity of the Loughborough Intermittent Shuttle Test for recreational soccer players is independent of their intermittent running ability. Res. Sports Med. 2016, 24, 363–374. [Google Scholar] [CrossRef] [Green Version]
- Besier, T.F.; Lloyd, D.G.; Ackland, T.R.; Cochrane, J.L. Anticipatory effects on knee joint loading during running and cutting maneuvers. Med. Sci. Sports Exerc. 2001, 33, 1176–1181. [Google Scholar] [CrossRef]
- Avela, J.; Santos, P.M.; Komi, P.V. Effects of differently induced stretch loads on neuromuscular control in drop jump exercise. Eur. J. Appl. Physiol. Occup. Physiol. 1996, 72, 553–562. [Google Scholar] [CrossRef]
- Aloui, G.; Hermassi, S.; Hammami, M.; Cherni, Y.; Gaamouri, N.; Shephard, R.J.; van den Tillaar, R.; Chelly, M.S. Effects of elastic band based plyometric exercise on explosive muscular performance and change of direction abilities of male team handball players. Front. Physiol. 2020, 11, 604983. [Google Scholar] [CrossRef] [PubMed]
- Gollhofer, A.; Kyröläinen, H. Neuromuscular control of the human leg extensor muscles in jump exercises under various stretch-load conditions. Int. J. Sports Med. 1991, 12, 34–40. [Google Scholar] [CrossRef]
- Coratella, G.; Beato, M.; Milanese, C.; Longo, S.; Limonta, E.; Rampichini, S.; Ce, E.; Bisconti, A.V.; Schena, F.; Esposito, F. Specific adaptations in performance and muscle architecture after weighted jump-squat vs. body mass squat jump training in recreational soccer players. J. Strength Cond. Res. 2018, 32, 921–929. [Google Scholar] [CrossRef] [PubMed]
- Davids, K.; Lees, A.; Burwitz, L. Understanding and measuring coordination and control in kicking skills in soccer: Implications for talent identification and skill acquisition. J. Sport Sci. 2000, 18, 703–714. [Google Scholar] [CrossRef]
- Kobal, R.; Pereira, L.A.; Zanetti, V.; Ramirez-Campillo, R.; Loturco, I. Effects of unloaded vs. loaded plyometrics on speed and power performance of elite young soccer players. Front. Physiol. 2017, 8, 742. [Google Scholar] [CrossRef] [Green Version]
- Rosas, F.; Ramirez-Campillo, R.; Diaz, D.; Abad-Colil, F.; Martinez-Salazar, C.; Caniuqueo, A.; Canas-Jamet, R.; Loturco, I.; Nakamura, F.Y.; McKenzie, C.; et al. Jump training in youth soccer players: Effects of haltere type handheld loading. Int. J. Sports Med. 2016, 37, 1060–1065. [Google Scholar] [CrossRef] [PubMed]
- Young, W.; Rogers, N. Effects of small-sided game and change-of-direction training on reactive agility and change-of-direction speed. J. Sports Sci. 2014, 32, 307–314. [Google Scholar] [CrossRef]
- Sáez de Villarreal, E.; Molina, J.G.; de Castro-Maqueda, G.; Gutiérrez-Manzanedo, J.V. Effects of plyometric, strength and change of direction training on high-school basketball player’s physical fitness. J. Hum. Kinet. 2021, 78, 175–186. [Google Scholar] [CrossRef]
- Adams, K.; O’Shea, J.; O’Shea, K.; Climstein, M. The effects of six weeks of squat, plyometric and squat-plyometric training on power development. J. Appl. Sports Sci. Res. 1992, 6, 36–41. [Google Scholar]
- Karahan, M. Effect of skill-based training vs. small-sided games on physical performance improvement in young soccer players. Biol. Sport 2020, 37, 305–312. [Google Scholar] [CrossRef]
- Pinthong, M.; Bunlum, N.; Limroongreungrat, W. Effect of hurdle heights on jumping mechanics in youth male soccer players. J. Sports Sci. Tec. 2015, 15, 9–16. [Google Scholar]
- Attene, G.; Iuliano, E.; Di Cagno, A.; Calcagno, G.; Moalla, W.; Aquino, G.; Padulo, J. Improving neuromuscular performance in young basketball players: Plyometric vs. technique training. J. Sports Med. Phys. Fit. 2014, 55, 1–8. [Google Scholar]
- Bedoya, A.; Miltenberger, M.; Lopez, R. Plyometric training effects on athletic performance in youth soccer athletes: A systematic review. J. Strength Cond. Res. 2015, 29, 2351–2360. [Google Scholar] [CrossRef]
- Beato, M.; Bianchi, M.; Coratella, G.; Merlini, M.; Drust, B. Effects of plyometric and directional training on speed and jump performance in elite youth soccer players. J. Strength Cond. Res. 2018, 32, 289–296. [Google Scholar] [CrossRef]
- Hammami, M.; Ramirez-Campillo, R.; Gaamouri, N.; Aloui, G.; Shephard, R.J.; Chelly, M.S. Effects of a combined upper- and lower-limb plyometric training program on high-intensity actions in female U14 handball players. Pediatric Exerc. Sci. 2019, 31, 465–472. [Google Scholar] [CrossRef]
- Sporis, G.; Jukic, I.; Milanovic, L.; Vucetic, V. Reliability and factorial validity of agility tests for soccer players. J. Strength Cond. Res. 2010, 24, 679–686. [Google Scholar] [CrossRef] [Green Version]
- Gribble, P.A.; Hertel, J. Considerations for normalizing measures of the star excursion balance test. Meas. Phys. Educ. Exerc. Sci. 2003, 7, 89–100. [Google Scholar] [CrossRef]
- Hammami, M.; Negra, Y.; Aouadi, R.; Shephard, R.J.; Chelly, M.S. Effects of an in-season plyometric training program on repeated change of direction and sprint performance in the junior soccer player. J. Strength Cond. Res. 2016, 30, 3312–3320. [Google Scholar] [CrossRef] [PubMed]
- Negra, Y.; Chaabene, H.; Sammoud, S.; Bouguezzi, R.; Abbes, M.A.; Hachana, Y.; Granacher, U. Effects of plyometric training on physical fitness in prepuberal soccer athletes. Int. J. Sports Med. 2017, 38, 370–377. [Google Scholar] [CrossRef] [PubMed]
- Glaister, M.; Howatson, G.; Pattison, J.R.; McInnes, G. The reliability and validity of fatigue measures during multiple-sprint work: An issue revisited. J. Strength Cond. Res. 2008, 22, 1597–1601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurlbert, S.; Levine, R.; Utts, J. Coup de Grâce for a tough old bull: “Statistically Significant” expires. Am. Stat. 2019, 73, 352–357. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. Statistical Power Analysis for the Behavioural Science, 2nd ed.; Lawrence Erlbaum: Hillsdale, NJ, USA, 1988; ISBN 0805802835. [Google Scholar]
- Vincent, W. Statistics in Kinesiology; Human Kinetics: Champaign, IL, USA, 1995. [Google Scholar]
- Schabort, E.J.; Hopkins, W.G.; Hawley, J.A. Reproducibility of self-paced treadmill performance of trained endurance runners. Int. J. Sports Med. 1998, 19, 48–51. [Google Scholar] [CrossRef] [PubMed]
- Haugen, T.A.; Tønnessen, E.; Seiler, S. Anaerobic performance testing of professional soccer players 1995-2010. Int. J. Sports Physiol. Perform. 2013, 8, 148–156. [Google Scholar] [CrossRef]
- Arnason, A.; Sigurdsson, S.B.; Gudmundsson, A.; Holme, I.; Engebretsen, L.; Bahr, R. Physical fitness, injuries, and team performance in soccer. Med. Sci. Sports Exerc. 2004, 36, 278–285. [Google Scholar] [CrossRef]
- Markovic, G.; Mikulic, P. Neuro-musculoskeletal and performance adaptations to lower-extremity plyometric training. Sports Med. 2010, 40, 859–895. [Google Scholar] [CrossRef]
- Cronin, J.B.; Brughelli, M.; Gamble, P.; Brown, S.R.; McKenzie, C. Acute kinematic and kinetic augmentation in horizontal jump performance using haltere type handheld loading. J. Strength Cond. Res. 2014, 28, 1559–1564. [Google Scholar] [CrossRef]
- Hammami, M.; Gaamouri, N.; Aloui, G.; Shephard, R.J.; Chelly, M.S. Effects of combined plyometric and short sprint with change-of-direction training on athletic performance of male U15 handball players. J. Strength Cond. Res. 2019, 33, 662–675. [Google Scholar] [CrossRef] [PubMed]
- Herrero, J.A.; Izquierdo, M.; Maffiuletti, N.A.; García-López, J. Electromyostimulation and plyometric training effects on jumping and sprint time. Int. J. Sports Med. 2006, 27, 533–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Markovic, G.; Jukic, I.; Milanovic, D.; Metikos, D. Effects of sprint and plyometric training on muscle function and athletic performance. J. Strength Cond. Res. 2007, 21, 543–549. [Google Scholar] [CrossRef] [PubMed]
- Thomas, K.; French, D.; Hayes, P.R. The effect of two plyometric training techniques on muscular power and agility in youth soccer players. J. Strength Cond. Res. 2009, 23, 332–335. [Google Scholar] [CrossRef] [Green Version]
- Cronin, J.; Hansen, K. Resisted sprint training for the acceleration phase of sprinting. Strength Cond. J. 2006, 28, 42–51. [Google Scholar] [CrossRef]
- Clark, K.P.; Stearne, D.J.; Walts, C.T.; Miller, A.D. The longitudinal effects of resisted sprint training using weighted sleds vs. weighted vests. J. Strength Cond. Res. 2010, 24, 3287–3295. [Google Scholar] [CrossRef] [PubMed]
- West, D.J.; Cunningham, D.J.; Bracken, R.M.; Bevan, H.R.; Crewther, B.T.; Cook, C.J.; Kilduff, L.P. Effects of resisted sprint training on acceleration in professional rugby union players. J. Strength Cond Res. 2013, 27, 1014–1018. [Google Scholar] [CrossRef] [PubMed]
- Morin, J.B.; Petrakos, G.; Jiménez-Reyes, P.; Brown, S.R.; Samozino, P.; Cross, M.R. Very-heavy sled training for improving horizontal-force output in soccer players. Int. J. Sports Physiol. Perform. 2017, 12, 840–844. [Google Scholar] [CrossRef]
- McMorrow, B.J.; Ditroilo, M.; Egan, B. Effect of heavy resisted sled sprint training during the competitive season on sprint and change-of-direction performance in professional soccer players. Int. J. Sports Physiol. Perform. 2019, 14, 1066–1073. [Google Scholar] [CrossRef]
- Rampinini, E.; Bishop, D.; Marcora, S.M.; Ferrari Bravo, D.; Sassi, R.; Impellizzeri, F.M. Validity of simple field tests as indicators of match-related physical performance in top-level professional soccer players. Int. J. Sports Med. 2007, 28, 228–235. [Google Scholar] [CrossRef]
- Ricotti, L.; Rigosa, J.; Niosi, A.; Menciassi, A. Analysis of balance, rapidity, force and reaction times of soccer players at different levels of competition. PLoS ONE 2013, 8, e77264. [Google Scholar] [CrossRef] [Green Version]
- Hrysomallis, C.; McLaughlin, P.; Goodman, C. Balance and injury in elite Australian footballers. Int. J. Sports Med. 2007, 28, 844–847. [Google Scholar] [CrossRef]
- Zech, A.; Hübscher, M.; Vogt, L.; Banzer, W.; Hänsel, F.; Pfeifer, K. Balance training for neuromuscular control and performance enhancement: A systematic review. J. Athl. Train. 2010, 45, 392–403. [Google Scholar] [CrossRef] [Green Version]
- Ozer, D.; Duzgun, I.; Baltaci, G.; Karacan, S.; Colakoglu, F. The effects of rope or weighted rope jump training on strength, coordination and proprioception in adolescent female volleyball players. J. Sports Med. Phys. Fit. 2011, 51, 211–219. [Google Scholar]
Days | Objectives |
---|---|
Mondays | Rest |
Tuesdays | Aerobic training/Defensive tactics training |
Wednesdays | Maximum power aerobic/Defensive tactics training |
Thursdays | Power anaerobic training/Defensive and offensive tactics training. |
Fridays | Technical training/Offensive tactics training. |
Saturdays | Technical training/Offensive tactics training. |
Sunday | Official games. |
Week | Workshop 1 | Workshop 2 | Workshop 3 | Workshop 4 | Total (Contact) |
---|---|---|---|---|---|
1 | 3 Repetitions | 3 Repetitions | 3 Repetitions | 3 Repetitions | 72 |
2 | 3 Repetitions | 3 Repetitions | 3 Repetitions | 3 Repetitions | 72 |
3 | 4 Repetitions | 4 Repetitions | 4 Repetitions | 4 Repetitions | 96 |
4 | 4 Repetitions | 4 Repetitions | 4 Repetitions | 4 Repetitions | 96 |
5 | 5 Repetitions | 5 Repetitions | 5 Repetitions | 5 Repetitions | 120 |
6 | 5 Repetitions | 5 Repetitions | 5 Repetitions | 5 Repetitions | 120 |
7 | 6 Repetitions | 6 Repetitions | 6 Repetitions | 6 Repetitions | 144 |
8 | 6 Repetitions | 6 Repetitions | 6 Repetitions | 6 Repetitions | 144 |
ICC (95%CI) | CV (95% CI) | |
---|---|---|
Vertical jump | ||
SJ (cm) | 0.98 (0.94–0.99) | 2.4 (2.0–2.7) |
CMJA (cm) | 0.97 (0.93–0.99) | 2.6 (2.3–2.9) |
Horizontal jump | ||
5JT (cm) | 0.88 (0.84–0.93) | 4.2 (3.8–4.6) |
Sprint times | ||
10 m (s) | 0.96 (0.93–0.98) | 1.8 (1.4–2.3) |
30 m (s) | 0.95 (0.92–0.98) | 1.9 (1.6–2.3) |
Change of direction test | ||
S90° (s) | 0.93 (0.90–0.97) | 1.6 (1.3–1.9) |
Y-balance test | ||
Right support leg | ||
Anterior direction (cm) | 0.98 (0.93–0.99) | 4.5 (4.0–4.9) |
Posteromedial direction (cm) | 0.98 (0.93–0.99) | 4.3 (3.8–4.7) |
Posterolateral direction (cm) | 0.96 (0.94–0.99) | 4.7 (4.3–5.2) |
Left support leg | ||
Anterior direction (cm) | 0.98 (0.94–0.99) | 4.6 (4.2–5.0) |
Posteromedial direction (cm) | 0.97 (0.94–0.99) | 4.3 (3.9–4.7) |
Posterolateral direction (cm) | 0.95 (0.91–0.97) | 4.8 (4.5–5.3) |
Experimental (n = 17) | Paired t-Test | Control (n = 17) | Paired t-Test | ANOVA (Group × Time) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre | Post | % Δ | p | d | Pre | Post | % Δ | p | d | p | ES | |
Vertical jump | ||||||||||||
SJ (cm) | 27.2 ± 2.2 | 33.6 ± 2.1 | 23.6 ± 3.7 | <0.001 | 2.95 | 27.59 ± 2.38 | 28.79 ± 2.39 | 4.38 ± 0.92 | <0.001 | 0.50 | <0.001 | 1.17 (large) |
CMJA (cm) | 33.4 ± 3.6 | 40.7 ± 3.8 | 22.2 ± 2.4 | <0.001 | 1.99 | 33.49 ± 2.33 | 34.96 ± 2.43 | 4.39 ± 0.96 | <0.001 | 0.62 | <0.001 | 0.98 (large) |
Horizontal jump | ||||||||||||
5JT (m) | 10.9 ± 0.43 | 12.5 ± 0.49 | 14.3 ± 1.2 | <0.001 | 3.38 | 11.1 ± 0.50 | 11.6 ± 0.51 | 4.3 ± 1.2 | <0.001 | 1.02 | <0.001 | 1.16 (large) |
Sprint | ||||||||||||
10 m (s) | 1.9 ± 0.07 | 1.74 ± 0.06 | −8.6 ± 0.78 | <0.001 | 2.51 | 1.9 ± 0. 06 | 1.83 ± 0.07 | −2.4 ± 0.62 | <0.001 | 0.70 | <0.001 | 0.94 (large) |
30 m (s) | 4.64 ± 0.17 | 4.31 ± 0.16 | −7.0 ± 0.49 | <0.001 | 1.93 | 4.56 ± 0.24 | 4.45 ± 0.24 | −2.6 ± 0.51 | <0.001 | 0.05 | 0.041 | 0.52 (medium) |
Change of direction performance | ||||||||||||
S 90° (s) | 7.67 ± 0.21 | 6.98 ± 0.16 | −9.0 ± 0.84 | <0.001 | 3.75 | 7.60 ± 0.25 | 7.41 ± 0.21 | −2.5 ± 0.64 | <0.001 | 0.82 | <0.001 | 1.24 (large) |
Experimental (n = 17) | Paired t-Test | Control (n = 17) | Paired t-Test | ANOVA (Group × Time) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre | Post | % Δ | p | d | Pre | Post | % Δ | p | d | p | ES | |
Repeated Change of Direction Ability parameters | ||||||||||||
Fast Time (s) | 6.90 ± 0.28 | 6.30 ± 0.25 | −7.6 ± 0.59 | <0.001 | 1.94 | 6.80 ± 0.30 | 6.68 ± 0.30 | −1.8 ± 0.43 | <0.001 | 0.41 | 0.005 | 0.73 (medium) |
Mean Time (s) | 7.00 ± 0.25 | 6.50 ± 0.24 | −7.8 ± 0.68 | <0.001 | 2.26 | 7.00 ± 0.27 | 6.83 ± 0.26 | −1.8 ± 0.56 | <0.001 | 0.45 | 0.001 | 0.84 (large) |
Fatigue Index (%) | 2.4 ± 1.40 | 2.20 ± 0.91 | −1.8 ± 26.9 | 0.284 | 0.17 | 2.80 ± 0.70 | 2.20 ± 0.90 | −1.7 ± 22.9 | 0.841 | 0.03 | 0.650 | 0.11 (small) |
Y-balance test—Right support leg | ||||||||||||
Anterior direction (cm) | 86.2 ± 5.60 | 94.3 ± 5.20 | 8.6 ± 2.00 | <0.001 | 1.50 | 87.1 ± 5.60 | 89.0 ± 5.60 | 2.18 ± 1.3 | <0.001 | 0.35 | 0.024 | 0.58 (medium) |
Posteromedial direction (cm) | 109 ± 5.50 | 120 ± 4.60 | 8.7 ± 2.40 | <0.001 | 2.04 | 110 ± 5.90 | 113 ± 6.20 | 2.1 ± 1.3 | <0.001 | 0.39 | 0.004 | 0.74 (medium) |
Posterolateral direction (cm) | 55.8 ± 6.80 | 63.4 ± 7.30 | 12.0 ± 2.20 | <0.001 | 1.08 | 56.6 ± 3.70 | 58.2 ± 4.40 | 2.7 ± 2.2 | <0.001 | 0.40 | 0.037 | 0.53 (medium) |
Y-balance test—Left support leg | ||||||||||||
Anterior direction (cm) | 88.2 ± 6.50 | 98.1 ± 7.60 | 10.0 ± 2.10 | <0.001 | 1.39 | 88.8 ± 5.70 | 91.1 ± 5.60 | 2.5 ± 1.1 | <0.001 | 0.40 | 0.019 | 0.61 (medium) |
Posteromedial direction (cm) | 108 ± 10.3 | 122 ± 9.30 | 11.2 ± 3.50 | <0.001 | 1.38 | 109 ± 8.10 | 112 ± 8.00 | 2.2 ± 1.6 | <0.001 | 0.34 | 0.015 | 0.63 (medium) |
Posterolateral direction (cm) | 55.4 ± 5.30 | 62.9 ± 5.20 | 12.0 ± 2.60 | <0.001 | 1.43 | 58.1 ± 4.60 | 59.8 ± 4.70 | 2.8 ± 2.1 | <0.001 | 0.37 | 0.019 | 0.61 (medium) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aloui, G.; Hermassi, S.; Hayes, L.D.; Bouhafs, E.G.; Chelly, M.S.; Schwesig, R. Loaded Plyometrics and Short Sprints with Change-of-Direction Training Enhance Jumping, Sprinting, Agility, and Balance Performance of Male Soccer Players. Appl. Sci. 2021, 11, 5587. https://doi.org/10.3390/app11125587
Aloui G, Hermassi S, Hayes LD, Bouhafs EG, Chelly MS, Schwesig R. Loaded Plyometrics and Short Sprints with Change-of-Direction Training Enhance Jumping, Sprinting, Agility, and Balance Performance of Male Soccer Players. Applied Sciences. 2021; 11(12):5587. https://doi.org/10.3390/app11125587
Chicago/Turabian StyleAloui, Ghaith, Souhail Hermassi, Lawrence D. Hayes, El Ghali Bouhafs, Mohamed Souhaiel Chelly, and René Schwesig. 2021. "Loaded Plyometrics and Short Sprints with Change-of-Direction Training Enhance Jumping, Sprinting, Agility, and Balance Performance of Male Soccer Players" Applied Sciences 11, no. 12: 5587. https://doi.org/10.3390/app11125587
APA StyleAloui, G., Hermassi, S., Hayes, L. D., Bouhafs, E. G., Chelly, M. S., & Schwesig, R. (2021). Loaded Plyometrics and Short Sprints with Change-of-Direction Training Enhance Jumping, Sprinting, Agility, and Balance Performance of Male Soccer Players. Applied Sciences, 11(12), 5587. https://doi.org/10.3390/app11125587