Effect of Earthing Enhancing Compound (EEC) on Improving Tower Footing Resistance of a 500 kV Tower in a Rocky Area
Abstract
:1. Introduction
2. Methodology
2.1. Description of the Case Studies
- Case study A: Modelling of soil profile interpretation.
- Case A (1): Soil layer analysis
- Case A (2): Soil resistivity analysis
- Case study B: Simulation of tower footing resistance (TFR) with different earthing designs under steady state conditions, using CDEGS.
- Case B (1): Effect of design analysis (Towers T42, T48 and T50)
- Case B (2): Effect of soil profile analysis
- Case study C: Simulation of tower footing resistance (TFR) with earthing Design C and encasement with EEC under steady state conditions, using CDEGS.
2.2. Soil Modelling
2.3. Earthing Systems with Different Designs
2.4. Earthing Enhancing Compound (EEC)
3. Results and Discussion
3.1. Case Study A: Soil Profile Interpretation
3.2. Case Study B: Tower Footing Resistance Computation for Different Earthing Designs
3.3. Case Study C: Effect of EEC on Electrodes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Batista, R.; Caetano, C.E.F.; Paulino, J.O.S.; Boaventura, W.C.; Lopes, I.J.S.; Cardoso, E.N. A study of grounding arrangements composed by vertical electrodes for two-layered stratified soil models. Electr. Power Syst. Res. 2020, 180, 106129. [Google Scholar] [CrossRef]
- Berhad, T.N.T. Supplementary Document TTS-LN-TES (S): 500/275/132 kV Monopole and Lattice tower Earthing Design; Tnaga Nasional Berhad: Kuala Lumpur, Malaysia, 2020. [Google Scholar]
- Philips, A. Handbook for Improving Overhead Transmission Line Lightning Performance; EPRI: Washington, DC, USA, 2004. [Google Scholar]
- Harid, N.; Griffiths, H.; Ullah, N.; Ahmeda, M.; Haddad, A. Experimental investigation of impulse characteristics of transmission line tower footings. J. Light. Res. 2012, 36–44. [Google Scholar] [CrossRef] [Green Version]
- Moreno, J.; Simon, P.; Faleiro, E.; Asensio, G.; Fernandez, J.A. Estimation of an upper bound to the value of the step potentials in two-layered soils from grounding resistance measurements. Materials 2020, 13, 290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, A.W.A.; Ahmad, N.N.; Mohamad Nor, N.; Idris, N.F.; Hanaffi, F. Investigations on the performance of grounding device with spike rods (GDSR) with the effects of soil resistivity and configurations. Energies 2020, 13, 3538. [Google Scholar] [CrossRef]
- Reffin, M.S.; Ali, A.W.A.; Nor, N.M.; Ahmad, N.N.; Abdullah, S.A.S.; Mahmud, A.; Hanaffi, F. Seasonal influences on the impulse characteristics of grounding systems for tropical countries. Energies 2019, 12, 1334. [Google Scholar] [CrossRef] [Green Version]
- Reffin, M.S.; Nor, N.M.; Ahmad, N.N.; Abdullah, S. Performance of practical grounding systems under high impulse conditions. Energies 2018, 11, 3187. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.W.A.; Ahmad, N.N.; Nor, N.M.; Reffin, M.S.; Abdullah, S.A.S. Investigations on the performance of a new grounding device with spike rods under high magnitude current conditions. Energies 2019, 12, 1138. [Google Scholar] [CrossRef] [Green Version]
- Yang, T. Study of reducing ground resistance for transmission tower on rocky mountain tops with constrained area. IEEJ Trans. Electr. Electron. Eng. 2015, 249–255. [Google Scholar] [CrossRef]
- He, J.; Zeng, R.; Zhang, B. Grounding of transmission and distribution line. In Methodology and Technology for Power System Grounding, 1st ed.; John Wiley & Sons Singapore Pte. Ltd.: Singapore, 2012; ISBN 9781118254950. [Google Scholar]
- He, J.L.; Chen, X.L.; Huang, Y.; Zhang, J.Y. Impulse characteristics of grounding systems of transmission-line towers. In Proceedings of the 10th IEEE Region conference on Computer, Communication, Control and Power Engineering, Beijing, China, 18–21 August 1998; pp. 156–162. [Google Scholar] [CrossRef]
- Pavel, S.G.; Maier, V.; Ciorca, C.; Beleiu, H.G.; Birou, I. Optimal design of the vertical earthing with electrodes arranged in line. Appl. Sci. 2020, 10, 1177. [Google Scholar] [CrossRef] [Green Version]
- Iskanto, E. HAPUA Working Group Report. 2000. Available online: https://www.slideshare.net/edyiskanto1/lightning-detection-and-protection-of-asean-country (accessed on 17 June 2021).
- Visacro, S.; Silveira, F.H. Lightning performance of transmission lines: Requirements of tower-footing electrodes consisting of long counterpoise wires. IEEE Trans. Power Deliv. 2016, 31, 1524–1532. [Google Scholar] [CrossRef]
- Moselhy, A.H.; Abdel-Aziz, A.M.; Gilany, M.; Emam, A. Impact of first tower earthing resistance on fast front back-flashover in a 66 kV transmission system. Energies 2020, 13, 4663. [Google Scholar] [CrossRef]
- Permal, N.; Osman, M.; Ariffin, A.M.; Kadir, M.Z.A.A. The impact of substation grounding grid design parameters in non-homogenous soil to the grid safety threshold parameters. IEEE Access 2021, 37497–37509. [Google Scholar] [CrossRef]
- Illias, H.A.; Su, C.S.; Bakar, A.H.A. Investigation on soil resistivity of two-layer soil structures using finite element analysis method. IET Sci. Meas. Technol. 2021. [Google Scholar] [CrossRef]
- Androvitsaneas, V.P.; Gonos, I.F.; Stathopulos, I.A. Research and applications of ground enhancing compounds in grounding systems. IET Gener. Transm. Distrib. 2017, 11, 3195–3201. [Google Scholar] [CrossRef]
- Radakovic, Z.R.; Jovanovic, M.V.; Milosevic, V.M.; Ilic, N.M. Application of earthing backfill materials in desert soil conditions. IEEE Trans. Ind. Appl. 2015, 51, 5288–5297. [Google Scholar] [CrossRef]
- Androvitsaneas, V.P.; Gonos, I.F.; Stathopulos, I.A. Experimental study on transient impedance of grounding rods encased in ground enhancing compounds. Electr. Power Syst. Res. 2016, 139, 109–115. [Google Scholar] [CrossRef]
- Androvitsaneas, V.P.; Christodoulou, C.A.; Gonos, I.F.; Stathopulos, I.A. Electric resistivity variation of ground enhancing compounds under field conditions. In Proceedings of the 2018 IEEE International Conference on High Voltage Engineering and Application (ICHVE), Athens, Greece, 10–13 September 2018. [Google Scholar] [CrossRef]
- Azmi, A.; Ahmad, N.A.; Yiew, L.K.; Abdul-Malek, Z. The use of enhancement material in grounding system: A review. Indones. J. Electr. Eng. Comput. Sci. 2019, 13, 453. [Google Scholar] [CrossRef]
- SES & Technologies Ltd. A Simple Substation Grounding Grid Analysis; SES: Laval, QC, Canada, 2017. [Google Scholar]
- Mohamed Rawi, I.; Ab-Kadir, M.Z.A.; Gomes, C.; Azis, N. A case study on 500 kV line performance related to lightning in Malaysia. IEEE Trans. Power Deliv. 2018, 33, 2180–2186. [Google Scholar] [CrossRef]
- Mohamed Rawi, I. Establishment of Optimal Externally Gapped Line Arrester Specification for 500 kV Transmission Line in Malaysia; Universiti Putra Malaysia: Seri Kembangan, Malaysia, 2017. [Google Scholar]
- Mohamed Rawi, I.; Ab-Kadir, M.Z.A.; Izadi, M. Seasonal variation of transmission line outages in Peninsular. Pertanika J. Sci. Technol. 2017, 25, 213–220. [Google Scholar]
- Stephen, N.H.; Schulte, B.C.G.; Bannick, N.L. Soil, Definition, Function, and Utilization of Soil, 3rd ed.; Wiley-VCH Verlag GmbH & Co.: Weinheim, Germany, 2006; Volume 33. [Google Scholar]
- Schoonover, J.E.; Crim, J.F. An Introduction to soil concepts and the role of soils in watershed management. J. Contemp. Water Res. Educ. 2015, 154, 21–47. [Google Scholar] [CrossRef]
- Edmonds, W.J.; Tech, V. Soil Profile Description Manual; Crop and Soil Environmental Sciences Virginia Tech.: Blacksburg, VA, USA, 1992. [Google Scholar]
- Wang, C.; Liang, X.; Adajar, E.; Loewen, P. Seasonal Variations of Tower Footing Impedance in Various Transmission Line Grounding Systems. In Proceedings of the 2020 IEEE Industry Applications Society Annual Meeting, Detroit, MI, USA, 10–16 October 2020. [Google Scholar]
- Charvin Arnoux Group. Understanding Soil Resistivity Testing Effects of Soil Resistivity on Understanding Soil Resistivity Testing. Application Notes, 2019. Available online: https://www.aemc.com/userfiles/files/resources/bulletins/TechBulletin_Q116_Issue9.pdf (accessed on 17 June 2021).
- Ramos, L.O.; Uribe, F.A.; Valcarcel, L.; Hajiaboli, A.; Franiatte, S.; Dawalibi, F.P. Nonlinear electrode arrangements for multilayer soil resistivity measurements. IEEE Trans. Electromagn. Compat. 2020, 62, 2148–2155. [Google Scholar] [CrossRef]
- Mokhtari, M.; Abdul-Malek, Z.; Gharehpetian, G.B. A critical review on soil ionisation modelling for grounding electrodes. Arch. Electr. Eng. 2016, 65, 449–461. [Google Scholar] [CrossRef]
- Cavka, D.; Mora, N.; Rachidi, F. A Comparison of frequency-dependent soil models: Application to the analysis of grounding systems. IEEE Trans. Electromagn. Compat. 2014, 56, 177–187. [Google Scholar] [CrossRef]
- Mahadi, M.A.A.; Othman, N.A.; Jamail, N.A.M.; Adzis, Z. Experimental Study of Soil Resistivity Using Different Rod Design and Material for Grounding System. Evol. Electr. Electron. Eng. 2020, 1, 64–72. [Google Scholar]
- Myint, S.M.; Hla, K.T.; Tun, T.T. Effective earthing system of electrical power engineering department using optimal electrodes. Int. J. Adv. Technol. Eng. Explor. 2020, 7, 28–35. [Google Scholar] [CrossRef] [Green Version]
- Working Group B2.56. Ground Potential Rise at Overhead AC Transmission Line Structures During Power Frequency Faults; CIGRE: Paris, France, 2017. [Google Scholar]
- Anekthanasuwan, W.; Jumrain, P.; Junpradit, T.; Petcharaks, N. Analysis of a back flashover across insulator strings on a 115 kV transmission line tower by PSCAD. Eng. Appl. Sci. Res. 2015, 42, 226–234. [Google Scholar] [CrossRef]
- Kumarasinghe, N.A. Low cost lightning protection system and its effectiveness. In Proceedings of the 20th International Lightning Detection Conference, Tucson, AZ, USA, 21 April 2008. [Google Scholar]
- Mohd Tadza, M.Y.; Tengku Anuar, T.H.H.; Mat Yahaya, F. Investigation on electrically conductive aggregates as grounding compound produced by marconite. Civ. Environ. Eng. Rep. 2019, 29, 86–96. [Google Scholar] [CrossRef] [Green Version]
- IEEE-SA Standards Board. IEEE Std. 81-Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Grounding System; IEEE: Piscataway, NJ, USA, 2012; Volume 2012. [Google Scholar]
- Wan Ahmad, W.F.H.; Lai, W.L.; Jasni, J.; Ab-Kadir, M.Z.A. Variations of soil resistivity values due to grounding system installations with natural enhancement material mixtures. In Proceedings of the 2018 34th International Conference on Lightning Protection (ICLP), Rzeszow, Poland, 2–7 September 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Ab-Kadir, M.Z.A. Ground Conductivity Earthing Material (GCEM); Universiti Putra Malaysia: Serdang, Malaysia, 2020. [Google Scholar]
- Balasubramanian, A. Chacteristics of Soil Profile; University of Mysore: Mysore, India, 2017. [Google Scholar]
- Shuhada, N.H.; Ahmad, N.A.; Adzis, Z. Enhancement material using bentonite. J. Adv. Res. Mater. Sci. 2016, 24, 1–8. [Google Scholar]
- Wong, C.; Yusop, Z.; Ismail, T. Trend of daily rainfall and temperature in Peninsular Malaysia based on gridded data set. Int. J. GEOMATE 2018. [Google Scholar] [CrossRef]
- Elgayar, A.I.; Abdul-Malek, Z. Induced voltages on a gas pipeline due to lightning strikes on nearby overhead transmission line. Int. J. Electr. Comput. Eng. 2016, 6, 495. [Google Scholar] [CrossRef]
Countries | Earthing Design | References | Remarks |
---|---|---|---|
China | [11,12] | Earthing design of a steel tower: a: 4 m S: 8 to 10 m l: 0 to 50 m | |
Radial earthing design of a reinforced concrete pole: a: 1.5 m d: 10 m l: 5 to 53 m | |||
Horizontal earth electrode with a lead wire connected at a terminal: l: 5 to 100 m | |||
Horizontal earth electrode with a lead wire connected in the middle: l: 5 to 60 m | |||
Japan | [11] | Square-shaped earthing electrode with a horizontal earthing electrode. | |
Horizontal earthing electrode with an earth plate. | |||
Horizontal earthing electrode with a combination of an earth rod and a filled low resistivity material. | |||
Earthing electrode with thorns and an earth plate. | |||
Indonesia | [14] | Octagon shape | |
Thailand | [14] | Ring shape |
Spacing, a (m) | Average Apparent Resistance (Ω) | ||
---|---|---|---|
T42 | T48 | T50 | |
1 | 398.6 | 236.4 | 150.69 |
1.5 | 233.12 | 95.92 | 89.15 |
2 | 166.72 | 57.63 | 61.57 |
3 | 115.61 | 35.97 | 34.25 |
4.5 | 71.64 | 20.14 | 25.87 |
6 | 42.77 | 16.92 | 19.06 |
9 | 28.74 | 10.72 | 17.82 |
13.5 | 14.25 | 9 | 8.41 |
18 | 8.58 | 9.87 | 7.94 |
Properties | Unit | Values |
---|---|---|
Visual appearance | - | Dark tan (powdered) |
Dry bulk density (average) at 47.7 N compaction force | g/cm3 | 1.07 |
Resistivity (average) at 100% moisture content, EEC mixed with water (1:1 ratio by volume) | Ω⋅m | 0.6 |
Wet bulk density (average) at 1:1 ratio by volume | g/cm3 | 1.49 |
Conductivity (average) at 100% moisture content, EEC mixed with water (1:1 ratio by volume) | S/m | 1.7 |
Parameter | Value |
---|---|
Radius of the borehole (m) | 0.12 |
Radius of the electrode (m) | 0.003302 |
EEC thickness (m) | 0.116698 |
Earthing Design | Tower Footing Resistance Value, Ω | ||
---|---|---|---|
Tower T42 | Tower T48 | Tower T50 | |
Design A | 26.3 | 20 | 15.2 |
Design B | 25.3 | 20.3 | 13.9 |
Design C | 8.8 | 9.2 | 5.6 |
Design C | ||
---|---|---|
Tower | Tower Footing Resistance Value, Ω | |
Without EEC | With EEC | |
T42 | 8.8 | 7 |
T48 | 9.2 | 7.7 |
T50 | 5.6 | 4.6 |
Earthing Design with EEC | % Reduction of TFR | ||
---|---|---|---|
Tower T42 | Tower T48 | Tower T50 | |
Design C | 20.45 | 16.3 | 17.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasir, N.A.F.M.; Kadir, M.Z.A.A.; Osman, M.; Abd Rahman, M.S.; Ungku Amirulddin, U.A.; Mohd Nasir, M.S.; Zaini, N.H.; Nik Ali, N.H. Effect of Earthing Enhancing Compound (EEC) on Improving Tower Footing Resistance of a 500 kV Tower in a Rocky Area. Appl. Sci. 2021, 11, 5623. https://doi.org/10.3390/app11125623
Nasir NAFM, Kadir MZAA, Osman M, Abd Rahman MS, Ungku Amirulddin UA, Mohd Nasir MS, Zaini NH, Nik Ali NH. Effect of Earthing Enhancing Compound (EEC) on Improving Tower Footing Resistance of a 500 kV Tower in a Rocky Area. Applied Sciences. 2021; 11(12):5623. https://doi.org/10.3390/app11125623
Chicago/Turabian StyleNasir, Nur Alia Farina Mohd, Mohd Zainal Abidin Ab Kadir, Miszaina Osman, Muhamad Safwan Abd Rahman, Ungku Anisa Ungku Amirulddin, Mohd Solehin Mohd Nasir, Nur Hazirah Zaini, and Nik Hakimi Nik Ali. 2021. "Effect of Earthing Enhancing Compound (EEC) on Improving Tower Footing Resistance of a 500 kV Tower in a Rocky Area" Applied Sciences 11, no. 12: 5623. https://doi.org/10.3390/app11125623
APA StyleNasir, N. A. F. M., Kadir, M. Z. A. A., Osman, M., Abd Rahman, M. S., Ungku Amirulddin, U. A., Mohd Nasir, M. S., Zaini, N. H., & Nik Ali, N. H. (2021). Effect of Earthing Enhancing Compound (EEC) on Improving Tower Footing Resistance of a 500 kV Tower in a Rocky Area. Applied Sciences, 11(12), 5623. https://doi.org/10.3390/app11125623