Linking Soil Erosion Modeling to Landscape Patterns and Geomorphometry: An Application in Crete, Greece
Abstract
:1. Introduction
- (a)
- Estimate soil erosion rates using the Revised Universal Soil Loss Equation (RUSLE);
- (b)
- Correlate soil erosion and landscape pattern using landscape metrics;
- (c)
- Prioritize erosion-prone areas or sub-basins according to the morphometric parameter results.
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. RUSLE Model
2.3.1. Model Description
2.3.2. Implementation of RUSLE Model
Rainfall Erosivity (R) Factor
Soil Erodibility (K) Factor
Slope Length–Steepness (LS) Factor
Cover Management (C) Factor
Support Practices (P) Factor
2.4. Landscape Metrics Analysis
- Number of Patches is the number of patches per unit area:
- Patch Density is the number of patches of a corresponding patch type (class) per unit area:
- Edge Density is the total length of all edge segments per hectare for the considered landscape:
- Largest Patch Index is the percentage of the landscape in the largest patch (%):
- Percentage of Landscape measures the extent percentage of each land cover class comprised of a particular patch type:
- Euclidean Nearest Neighbor Distance Area-Weighted Mean (ENN_AM) is the shortest straight-line distance (m) between a focal patch and its nearest neighbor of the same class.
- Splitting Index is the number of patches obtained by subdividing the landscape into equal-sized patches based on the effective mesh size.
2.5. Morphometric Parameters Analysis
3. Results and Discussion
3.1. RUSLE Model
3.1.1. Rainfall Erosivity (R) Factor
Satellite-Based Rainfall Erosivity (R) Factor
Ground-Based Rainfall Erosivity (R) Factor
3.1.2. Soil Erodibility (K) Factor
3.1.3. Slope Length–Steepness (LS) Factor
3.1.4. Cover Management (C) Factor
3.1.5. Support Practices (P) Factor
3.1.6. RUSLE Model
- Scenario 5: A soil loss map was produced with R-factor values derived from in situ data and C-factor values assigned from literature data (Figure 20);
- Scenario 6: A soil loss map was produced with R-factor values derived from in situ data and C-factor values derived from NDVI (exponential (NDVI-vk)) data (Figure 21).
3.2. Landscape Metrics Analysis
3.3. Morphometric Parameters Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Polykretis, C.; Alexakis, D.D.; Grillakis, M.G.; Manoudakis, S. Assessment of intra-annual and inter-annual variabilities of soil erosion in Crete Island (Greece) by incorporating the dynamic “nature” of R and C-factors in RUSLE modeling. Remote Sens. 2020, 12, 2439. [Google Scholar] [CrossRef]
- Eisazadeh, L.; Sokouti, R.; Homaee, M.; Pazira, E. Comparison of empirical models to estimate soil erosion and sediment yield in micro catchments. Eurasian J. Soil Sci. 2012, 1, 28–33. [Google Scholar] [CrossRef]
- Kouli, M.; Soupios, P.; Vallianatos, F. Soil erosion prediction using the Revised Universal Soil Loss Equation (RUSLE) in a GIS framework, Chania, Northwestern Crete, Greece. Environ. Geol. 2009, 57, 483–497. [Google Scholar] [CrossRef]
- Karydas, C.G.; Sekuloska, T.; Silleos, G.N. Quantification and site-specification of the support practice factor when mapping soil erosion risk associated with olive plantations in the Mediterranean island of Crete. Environ. Monit. Assess. 2009, 149, 19–28. [Google Scholar] [CrossRef]
- Koirala, P.; Thakuri, S.; Joshi, S.; Chauhan, R. Estimation of Soil Erosion in Nepal using a RUSLE modeling and geospatial tool. Geoscience 2019, 9, 147. [Google Scholar] [CrossRef] [Green Version]
- Phinzi, K.; Ngetar, N.S. The assessment of water-borne erosion at catchment level using GIS-based RUSLE and remote sensing: A review. Int. Soil Water Conserv. Res. 2019, 7, 27–46. [Google Scholar] [CrossRef]
- Alexakis, D.D.; Hadjimitsis, D.G.; Agapiou, A. Integrated use of remote sensing, GIS and precipitation data for the assessment of soil erosion rate in the catchment area of “Yialias” in Cyprus. Atmos. Res. 2013, 131, 108–124. [Google Scholar] [CrossRef]
- Kouli, M.; Kalisperi, D.; Soupios, P.; Vallianatos, F. Modeling soil erosion processes in watersheds and the relation between soil loss with geomorphic and chemical parameters. Watersheds Manag. Restor. Environ. Impact 2010, 65–114. [Google Scholar]
- Shi, Z.H.; Ai, L.; Li, X.; Huang, X.D.; Wu, G.L.; Liao, W. Partial least-squares regression for linking land-cover patterns to soil erosion and sediment yield in watersheds. J. Hydrol. 2013, 498, 165–176. [Google Scholar] [CrossRef]
- Kumar Pradhan, R.; Srivastava, P.K.; Maurya, S.; Kumar Singh, S.; Patel, D.P. Integrated framework for soil and water conservation in Kosi River Basin. Geocarto Int. 2020, 35, 391–410. [Google Scholar] [CrossRef]
- Cham, D.D.; Son, N.T.; Minh, N.Q.; Thanh, N.T.; Dung, T.T. An analysis of shoreline changes using combined multitemporal remote sensing and digital evaluation model. Civ. Eng. J. 2020, 6, 1–10. [Google Scholar] [CrossRef]
- Panagos, P.; Christos, K.; Cristiano, B.; Ioannis, G. Seasonal monitoring of soil erosion at regional scale: An application of the G2 model in crete focusing on agricultural land uses. Int. J. Appl. Earth Obs. Geoinf. 2014, 27, 147–155. [Google Scholar] [CrossRef]
- Polykretis, C.; Grillakis, M.G.; Alexakis, D.D. Exploring the impact of various spectral indices on land cover change detection using change vector analysis: A case study of Crete Island, Greece. Remote Sens. 2020, 12, 319. [Google Scholar] [CrossRef] [Green Version]
- Retalis, A.; Katsanos, D.; Tymvios, F.; Michaelides, S. Comparison of GPM imerg and TRMM 3B43 products over Cyprus. Remote Sens. 2020, 12, 3212. [Google Scholar] [CrossRef]
- Panagos, P.; Meusburger, K.; Ballabio, C.; Borrelli, P.; Alewell, C. Soil erodibility in Europe: A high-resolution dataset based on LUCAS. Sci. Total Environ. 2014, 479–480, 189–200. [Google Scholar] [CrossRef]
- Niipele, J.N.; Chen, J. The usefulness of alos-palsar dem data for drainage extraction in semi-arid environments in The Iishana sub-basin. J. Hydrol. Reg. Stud. 2019, 21, 57–67. [Google Scholar] [CrossRef]
- Shawky, M.; Moussa, A.; Hassan, Q.K.; El-Sheimy, N. Pixel-based geometric assessment of channel networks/orders derived from global spaceborne digital elevation models. Remote Sens. 2019, 11, 235. [Google Scholar] [CrossRef] [Green Version]
- SUHET. Sentinel-2 User Handbook; European Comission: Brussels, Belgium, 2015. [Google Scholar]
- Panagos, P.; Borrelli, P.; Meusburger, K.; van der Zanden, E.H.; Poesen, J.; Alewell, C. Modelling the effect of support practices (P-factor) on the reduction of soil erosion by water at European scale. Environ. Sci. Policy 2015, 51, 23–34. [Google Scholar] [CrossRef]
- Panagos, P.; Meusburger, K.; Alewell, C.; Montanarella, L. Soil erodibility estimation using LUCAS point survey data of Europe. Environ. Model. Softw. 2012, 30, 143–145. [Google Scholar] [CrossRef]
- Oliveira, J.A.; Dominguez, J.M.L.; Nearing, M.A.; Oliveira, P.T.S. A GIS-Based procedure for automatically calculating soil loss from the universal soil loss Equation: GISus-M. Appl. Eng. Agric. 2015, 31, 907–917. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Meusburger, K.; Alewell, C.; Lugato, E.; Montanarella, L. Estimating the soil erosion cover-management factor at the European scale. Land Use Policy 2015, 48, 38–50. [Google Scholar] [CrossRef]
- Alkharabsheh, M.M.; Alexandridis, T.K.; Bilas, G.; Misopolinos, N.; Silleos, N. Impact of Land Cover Change on Soil Erosion Hazard in Northern Jordan Using Remote Sensing and GIS. Procedia Environ. Sci. 2013, 19, 912–921. [Google Scholar] [CrossRef] [Green Version]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses; Department of Agriculture, Science and Education Administration: Corvallis, OR, USA, 1978. [Google Scholar]
- Rubianca, B.; Bethanna, J.; Deborah, M.; Kevin, N. A review of the Revised Universal Soil Loss Equation RUSLE With a view to increasing its global applicability and improving soil loss estimates. Hydrol. Earth Syst. Sci. 2018, 22, 6059–6086. [Google Scholar]
- Renard, K.G.; Freimund, J.R. Using monthly precipitation data to estimate the R-factor in the revised USLE. J. Hydrol. 1994, 157, 287–306. [Google Scholar] [CrossRef]
- De Santos Loureiro, N.; de Azevedo Coutinho, M. A new procedure to estimate the RUSLE EI30 index, based on monthly rainfall data and applied to the Algarve region, Portugal. J. Hydrol. 2001, 250, 12–18. [Google Scholar] [CrossRef]
- Grillakis, M.G.; Polykretis, C.; Alexakis, D.D. Past and projected climate change impacts on rainfall erosivity: Advancing our knowledge for the eastern Mediterranean island of Crete. Catena 2020, 193, 104625. [Google Scholar] [CrossRef]
- Alexakis, D.D.; Tsanis, I.K. Comparison of multiple linear regression and artificial neural network models for downscaling TRMM precipitation products using MODIS data. Environ. Earth Sci. 2016, 75. [Google Scholar] [CrossRef]
- Zhan, C.; Han, J.; Hu, S.; Liu, L.; Dong, Y. Spatial Downscaling of GPM Annual and Monthly Precipitation Using Regression-Based Algorithms in a Mountainous Area. Adv. Meteorol. 2018, 2018. [Google Scholar] [CrossRef] [Green Version]
- Kruk, E.; Klapa, P.; Ryczek, M.; Ostrowski, K. Influence of dem elaboration methods on the usle model topographical factor parameter on steep slopes. Remote Sens. 2020, 12, 3540. [Google Scholar] [CrossRef]
- Desmet, P.J.J.; Govers, G. A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units. J. Soil Water Conserv. 1996, 51, 427–433. [Google Scholar]
- McCool, D.K.; Foster, G.R.; Mutchler, C.K.; Meyer, L.D. Revised slope length factor for the universal soil loss equation. Trans. Am. Soc. Agric. Eng. 1989, 32, 1571–1576. [Google Scholar] [CrossRef]
- Ozsahin, E.; Duru, U.; Eroglu, I. Land use and land cover changes (LULCC), a key to understand soil erosion intensities in the Maritsa Basin. Water 2018, 10, 335. [Google Scholar] [CrossRef] [Green Version]
- Mondal, P.; Liu, X.; Fatoyinbo, T.E.; Lagomasino, D. Evaluating combinations of sentinel-2 data and machine-learning algorithms for mangrove mapping in West Africa. Remote Sens. 2019, 11, 2928. [Google Scholar] [CrossRef] [Green Version]
- Van der Knijff, J.M.; Jones, R.J.A.; Montanarella, L. Soil Erosion Risk Assessment in Europe; Technical Report; Joint Research Centre European Soil Bureau: Brussels, Belgium, 2000; p. 32. [Google Scholar]
- Durigon, V.L.; Carvalho, D.F.; Antunes, M.A.H.; Oliveira, P.T.S.; Fernandes, M.M. NDVI time series for monitoring RUSLE cover management factor in a tropical watershed. Int. J. Remote Sens. 2014, 35, 441–453. [Google Scholar] [CrossRef]
- Karydas, C.G.; Gitas, I.Z.; Parcharidis, I.A.; Adediran, A.O. Creation of a land cover map of Crete, using SPOT satellite data. Geography 2002, 2, 167–171. [Google Scholar]
- Alexakis, D.D.; Agapiou, A.; Hadjimitsis, D.G.; Retalis, A. Optimizing statistical classification accuracy of satellite remotely sensed imagery for supporting fast flood hydrological analysis. Acta Geophys. 2012, 60, 959–984. [Google Scholar] [CrossRef]
- Almagro, A.; Thomé, T.C.; Colman, C.B.; Pereira, R.B.; Marcato Junior, J.; Rodrigues, D.B.B.; Oliveira, P.T.S. Improving cover and management factor (C-factor) estimation using remote sensing approaches for tropical regions. Int. Soil Water Conserv. Res. 2019, 7, 325–334. [Google Scholar] [CrossRef]
- Zhang, X.; Liao, C.; Li, J.; Sun, Q. Fractional vegetation cover estimation in arid and semi-arid environments using: HJ-1 satellite hyperspectral data. Int. J. Appl. Earth Obs. Geoinf. 2012, 21, 506–512. [Google Scholar] [CrossRef]
- Jing, X.; Yao, W.Q.; Wang, J.H.; Song, X.Y. A study on the relationship between dynamic change of vegetation coverage and precipitation in Beijing’s mountainous areas during the last 20 years. Math. Comput. Model. 2011, 54, 1079–1085. [Google Scholar] [CrossRef]
- Li, L.; Wang, Y.; Liu, C. Effects of land use changes on soil erosion in a fast developing area. Int. J. Environ. Sci. Technol. 2014, 11, 1549–1562. [Google Scholar] [CrossRef] [Green Version]
- Alexakis, D.D.; Hadjimitsis, D.G.; Agapiou, A.; Themistocleous, K.; Retalis, A. Monitoring urban land cover using satellite remote sensing techniques and field spectroradiometric measurements: Case study of “Yialias” catchment area in Cyprus. J. Appl. Remote Sens. 2012, 6, 063603. [Google Scholar] [CrossRef]
- Kumar, M.; Denis, D.M.; Singh, S.K.; Szabó, S.; Suryavanshi, S. Landscape Metrics for Assessment of Land Cover Change and Fragmentation of a Heterogeneous Watershed; Elsevier: Amsterdam, The Netherlands, 2018; Volume 10, ISBN 1976198920002. [Google Scholar]
- Sambrakos, M.; Tsiligiridis, T. A Comparative Landscape Pattern Analysis Using Remotely-Sensed and Statistical Data to Evaluate Regional Diversity. In Proceedings of the 1st International Congress TAFE, 2003 (Information Technology in Agriculture, Food and Environment), O-GIS-33-0, Edge University, Izmir, Turkey, 7–10 October 2003. [Google Scholar]
- Panagos, P.; Ballabio, C.; Borrelli, P.; Meusburger, K. Spatio-temporal analysis of rainfall erosivity and erosivity density in Greece. Catena 2016, 137, 161–172. [Google Scholar] [CrossRef]
- Panagos, P.; Ballabio, C.; Borrelli, P.; Meusburger, K.; Klik, A.; Rousseva, S.; Tadić, M.P.; Michaelides, S.; Hrabalíková, M.; Olsen, P.; et al. Rainfall erosivity in Europe. Sci. Total Environ. 2015, 511, 801–814. [Google Scholar] [CrossRef] [Green Version]
- Mazzoglio, P.; Laio, F.; Balbo, S.; Boccardo, P.; Disabato, F. Improving an Extreme Rainfall Detection System with GPM IMERG data. Remote Sens. 2019, 11, 677. [Google Scholar] [CrossRef] [Green Version]
- Kourgialas, N.N.; Koubouris, G.C.; Karatzas, G.P.; Metzidakis, I. Assessing water erosion in Mediterranean tree crops using GIS techniques and field measurements: The effect of climate change. Nat. Hazards 2016, 83, 65–81. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Poesen, J.; Ballabio, C.; Lugato, E.; Meusburger, K.; Montanarella, L.; Alewell, C. The new assessment of soil loss by water erosion in Europe. Environ. Sci. Policy 2015, 54, 438–447. [Google Scholar] [CrossRef]
- Huang, Q.; Huang, J.; Yang, X.; Ren, L.; Tang, C.; Zhao, L. Evaluating the scale effect of soil erosion using landscape pattern metrics and information entropy: A case study in the Danjiangkou reservoir area, China. Sustainability 2017, 9, 1243. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, W.; Skidmore, A.K.; Hao, F.; Wang, T. Soil erosion dynamics response to landscape pattern. Sci. Total Environ. 2010, 408, 1358–1366. [Google Scholar] [CrossRef]
- Gajbhiye, S.; Mishra, S.K.; Pandey, A. Prioritizing erosion-prone area through morphometric analysis: An RS and GIS perspective. Appl. Water Sci. 2014, 4, 51–61. [Google Scholar] [CrossRef] [Green Version]
- Farhan, Y.; Anaba, O. A Remote Sensing and GIS Approach for Prioritization of Wadi Shueib Mini-Watersheds (Central Jordan) Based on Morphometric and Soil Erosion Susceptibility Analysis. J. Geogr. Inf. Syst. 2016, 8, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Kinnell, P.I.A. Event soil loss, runoff and the Universal Soil Loss Equation family of models: A review. J. Hydrol. 2010, 385, 384–397. [Google Scholar] [CrossRef]
- Merritt, W.S.; Letcher, R.A.; Jakeman, A.J. A review of erosion and sediment transport models. Environ. Model. Softw. 2003, 18, 761–799. [Google Scholar] [CrossRef]
Factors | Datasets | Data Source | Spatial/Temporal Resolution |
---|---|---|---|
Rainfall erosivity | GPM_3IMERGDL v06 | Giovanni, NASA | 0.1° × 0.1° Daily |
Soil erodibility | Soil structure | European Soil Database (ESDB) | - |
Soil properties | LUCAS topsoil database | ||
Slope length and steepness | ALOS PALSAR DEM | Alaska Satellite Facility (ASF) | 12.5 m |
Cover management | Sentinel-2 images | “Copernicus” program | 10 m |
Support practice | LUCAS observation | Eurostat | 2018 |
Structure Class | Description | Granular Size | European Soil Database |
---|---|---|---|
1 | Very fine granular | 1–2 mm | Good |
2 | Fine granular | 2–5 mm | Normal |
3 | Medium or coarse granular | 5–10 mm | Poor |
4 | Blocky, platy, or massive | >10 mm | Humic |
Permeability Class | Description | Texture |
---|---|---|
1 | Fast and very fast | Sand |
2 | Moderate fast | Loamy sand, sandy loam |
3 | Moderate | Loam, silty loam |
4 | Moderate slow | Sandy clay loam, clay loam |
5 | Slow | Silty clay loam, sand clay |
6 | Very slow | Silty clay, clay |
Corine | C-Factor | |
---|---|---|
Code | Label | |
212 | Permanently irrigated land | 0.1307 |
223 | Olive groves | 0.2094 |
231 | Pasture | 0.1132 |
242 | Complex cultivation patterns | 0.1476 |
243 | Land principally occupied by agriculture with significant areas of natural vegetation | 0.1307 |
311 | Broadleaf forest | 0.0014 |
313 | Mixed forest | 0.0014 |
321 | Natural grassland | 0.0014 |
323 | Sclerophyllous vegetation | 0.0014 |
324 | Transitional woodland–shrubs | 0.026 |
333 | Sparsely vegetated areas | 0.3062 |
Slope (%) | Pcf |
---|---|
1–2 | 0.60 |
3–5 | 0.50 |
6–8 | 0.50 |
9–12 | 0.60 |
13–16 | 0.70 |
17–20 | 0.80 |
21–25 | 0.90 |
>25 | 0.95 |
No of Features (SW or GM) | % Sw | Psw | % Gm | Pgm |
---|---|---|---|---|
0 | 0 | 1 | 0 | 1 |
1 | 83.33 | 0.707 | 100 | 0.853 |
2 | 0 | 0.577 | 0 | 0.789 |
3 | 16.66 | 0.5 | 0 | 0.750 |
4 | 0 | 0.448 | 0 | 0.724 |
5 | 0 | 0.408 | 0 | 0.704 |
6 | 0 | 0.378 | 0 | 0.689 |
7 | 0 | 0.354 | 0 | 0.677 |
8 | 0 | 0.334 | 0 | 0.667 |
>8 | 0 | 0.317 | 0 | 0.66 |
Parameters | Description/Equation | Unit | |||
---|---|---|---|---|---|
Basic parameters | Area | (A) | Area of the watershed | km2 | |
Basin perimeter | (P) | The length of the watershed boundary | Km | ||
Basin length | (Lb) | Distance between the watershed outlet and the farthest point on the watershed | Km | ||
Stream order | (u) | Hierarchical ranking | Dimensionless | ||
Number of stream | (Nu) | Number of the stream segments of aparticular order | |||
Stream length | (Lu) | Total length of the stream segments of a particular order | Km | ||
Linear parameters | Bifrucation ratio | (Rb) | Ratio of the number of streams of a given order u to the number of streams of higher order u + 1 | Dimensionless | |
Drainage density | (Dd) | Ratio of the total length of the streams of all orders in the basin to the area of the basin | km−1 | ||
Stream frequency | (Fu) | Total number of streams of all orders per unit area of the basin | Streams.km−2 | ||
Texture ratio | (T) | Ratio of the total number of streams of all orders to the perimeter of the basin | km−1 | ||
Length of overland flow | (Lo) | Length of the water flow over the ground before it combines with the main stream | Km | ||
Shape parameters | Form factor | (Rf) | Ratio of basin area A to the square of length of the basin Lb | M | |
Shape factor | (Bs) | Ratio of the square of the length of the basin Lb to the basin area A | Dimensionless | ||
Elongation ratio | (Re) | Ratio between the diameter of a circle with the same area as that of the basin to the length of the basin | Dimensionless | ||
Compactness coefficient | (Cc) | Ratio between the basin perimeter and the area of a circle to the same area of that basin | Dimensionless | ||
Circularity ratio | (Rc) | Ratio of the basin area to the area of circle having an equal perimeter as the perimeter of the basin | Dimensionless |
Station Name | R-Factor (MJ mm/ha h yr) |
---|---|
Elos | 288.429 |
Paleochora | 545.625 |
Kandanos | 240.214 |
Sebronas | 131.25 |
Samaria | 958.875 |
Land Cover Class | Mean Annual Soil Loss (t ha−1 Year−1) | |||
---|---|---|---|---|
Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | |
Agricultural areas | 5.882 | 5.642 | 6.873 | 5.253 |
Forest | 0.145 | 1.452 | 8.932 | 0.835 |
Natural grassland and pasture | 3.064 | 5.241 | 5.809 | 2.896 |
Shrubland | 0.912 | 4.950 | 11.381 | 2.491 |
Sparsely vegetated areas | 37.927 | 4.693 | 4.142 | 0.864 |
Scenario 1 | Scenario 2 | Scenario 5 | Scenario 6 | |
---|---|---|---|---|
R-Factor Derived from GPM Data | R-Factor Derived from Rain Gauge Data | |||
C-Factor Derived from Literature | C-Factor Derived from NDVI (vk) | C-Factor Derived from Literature | C-Factor Derived from NDVI (vk) | |
Mean annual soil erosion (t ha−1 year−1) | 2.59 | 4.63 | 1.95 | 3.24 |
Land Cover Classes | Total Area | NP | PD | ED | |||||
---|---|---|---|---|---|---|---|---|---|
2010 | 2020 | 2010 | 2020 | 2010 | 2020 | 2010 | 2020 | ||
1 | Urban | 71.28 | 97.74 | 140 | 243 | 0.93 | 1.61 | 2.79 | 4.56 |
2 | Cropland | 3218.58 | 4673.43 | 2259 | 3887 | 15.04 | 25.89 | 100.45 | 157.88 |
3 | Woodland and forest | 247.41 | 377.37 | 480 | 837 | 3.19 | 5.57 | 10.23 | 20.18 |
4 | Grassland | 2947.68 | 2768.31 | 1458 | 3336 | 9.71 | 22.22 | 61.47 | 95.58 |
5 | Heathland and shrub | 8527.05 | 7077.69 | 1253 | 3977 | 8.34 | 26.49 | 142.23 | 202.5 |
6 | Sparsely vegetated areas | 18.72 | 46 | 0.3 | 1.12 | ||||
Land Cover Classes | LPI | ENN_AM | PLAND | SPLIT | |||||
2010 | 2020 | 2010 | 2020 | 2010 | 2020 | 2010 | 2020 | ||
1 | Urban | 0.15 | 0.14 | 140 | 243 | 0.47 | 0.65 | 337133.02 | 231397.27 |
2 | Cropland | 8.21 | 18.56 | 2259 | 3887 | 21.44 | 31.12 | 110.97 | 26.40 |
3 | Woodland and forest | 0.12 | 0.43 | 480 | 837 | 1.64 | 2.51 | 51675.1 | 41194.35 |
4 | Grassland | 4.1 | 2.81 | 1458 | 3336 | 19.63 | 18.43 | 312.88 | 444.27 |
5 | Heathland and shrub | 49.18 | 20.64 | 1253 | 3977 | 56.8 | 47.14 | 4.12 | 20.22 |
6 | Sparsely vegetated areas | 0.039 | 46 | 0.12 | 4719625.27 |
Land Cover Classes | Mean Soil Erosion Rate Scenario No. | Landscape Metrics (2020) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 5 | 6 | PD | ED | LPI | ENN_AM | PLAND | SPLIT | |
Cropland | 6 | 4.73 | 4.34 | 4.014 | 25.9 | 157.9 | 18.6 | 61.64 | 31.12 | 26.4 |
Woodland and forest | 0.67 | 2.06 | 0.61 | 2.6 | 5.57 | 20.18 | 0.43 | 81.42 | 2.51 | 41194.35 |
Grassland | 3.06 | 5.24 | 1.16 | 2.89 | 22.2 | 95.58 | 2.81 | 63.47 | 18.43 | 444.27 |
Heathland and shrub | 0.1 | 6.62 | 0.06 | 4.33 | 26.5 | 202.5 | 20.6 | 60.44 | 47.14 | 20.22 |
MLR | Landscape Metrics | Correlation | ||||||
---|---|---|---|---|---|---|---|---|
PD | ED | LPI | ENN_AM | PLAND | SPLIT | |||
Scenario 1 | R2 | 0.45 | 0.34 | 0.18 | 0.92 | 0.3 | 0.97 | ENN_AM SPLIT |
p value | 0.2 | 0.3 | 0.47 | 0.009 | 0.33 | 0.001 | ||
Scenario 2 | R2 | 0.4 | 0.5 | 0.38 | 0.028 | 0.56 | 0 | No correlation |
p value | 0.24 | 0.17 | 0.26 | 0.78 | 0.14 | 0.99 | ||
Scenario 5 | R2 | 0.42 | 0.31 | 0.15 | 0.9 | 0.28 | 0.95 | ENN_AM SPLIT |
p value | 0.23 | 0.32 | 0.51 | 0.014 | 0.35 | 0.004 | ||
Scenario 6 | R2 | 0.8 | 0.95 | 0.93 | 0.5 | 0.93 | 0.43 | PD, ED, LPI, PLAND |
p value | 0.039 | 0.004 | 0.006 | 0.14 | 0.008 | 0.22 |
Linear Parameters | Shape Parameters | Compound Factor | Priority | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Rb | Dd | Fu | T | Lo | Rf | Bs | Re | Cc | Rc | |||
Kakodikianos | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1.6 | 2 |
Pelekaniotis | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 2 | 1.4 | 1 |
Mean Soil Erosion Rate (2020) | |||
---|---|---|---|
Kakodikianos | Pelekaniotis | ||
Scenario 1 | R-GPM, C-lit | 2.92 | 2.19 |
Scenario 2 | R-GPM, C-ndvi | 4.72 | 4.52 |
Scenario 5 | R-in situ, C-lit | 1.8 | 2.14 |
Scenario 6 | R-in situ, C-ndvi | 2.54 | 4.06 |
Catchment | Priority Based On | ||||
---|---|---|---|---|---|
Soil Loss Estimation | Morphometric Parameters | ||||
Scenario 1 | Scenario 2 | Scenario 5 | Scenario 6 | ||
Kakodikianos | 1 | 1 | 2 | 2 | 2 |
Pelekaniotis | 2 | 2 | 1 | 1 | 1 |
Scenario 1 | Scenario 2 | Scenario 5 | Scenario 6 | ||
---|---|---|---|---|---|
Priority (%) | High | 4.8 | 6.4 | 0.8 | 6.4 |
Moderate | 8.8 | 11.2 | 7.2 | 26 | |
Low | 16.8 | 29.6 | 21.6 | 19 | |
Total (%) | 30.4 | 47.2 | 29.6 | 51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brini, I.; Alexakis, D.D.; Kalaitzidis, C. Linking Soil Erosion Modeling to Landscape Patterns and Geomorphometry: An Application in Crete, Greece. Appl. Sci. 2021, 11, 5684. https://doi.org/10.3390/app11125684
Brini I, Alexakis DD, Kalaitzidis C. Linking Soil Erosion Modeling to Landscape Patterns and Geomorphometry: An Application in Crete, Greece. Applied Sciences. 2021; 11(12):5684. https://doi.org/10.3390/app11125684
Chicago/Turabian StyleBrini, Imen, Dimitrios D. Alexakis, and Chariton Kalaitzidis. 2021. "Linking Soil Erosion Modeling to Landscape Patterns and Geomorphometry: An Application in Crete, Greece" Applied Sciences 11, no. 12: 5684. https://doi.org/10.3390/app11125684
APA StyleBrini, I., Alexakis, D. D., & Kalaitzidis, C. (2021). Linking Soil Erosion Modeling to Landscape Patterns and Geomorphometry: An Application in Crete, Greece. Applied Sciences, 11(12), 5684. https://doi.org/10.3390/app11125684