Bioconservation of Historic Stone Buildings—An Updated Review
Abstract
:1. Introduction
2. Bioconsolidation Techniques
2.1. Microbial Cells in Bioconsolidation Treatments
2.2. Microbial Products in Bioconsolidation Treatments
3. Effectiveness of the Consolidated Stone in the Environment
Biodeterioration Testing and Colonization of Biocalcite
4. Other Microbial Applications in Stone Conservation
5. Biocleaning
5.1. Removal of Inorganic Materials—Black Crusts, Nitrate Crusts
5.2. Removal of Organic Materials
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scheerer, S.; Ortega-Morales, O.; Gaylarde, C. Microbial deterioration of stone monuments—An updated overview. Adv. Appl. Microbiol. 2009, 66, 97–139. [Google Scholar]
- Schabereiter-Gurtner, C.; Piñar, G.; Vybiral, D.; Lubitz, W.; Rölleke, S. Rubrobacter-related bacteria associated with rosy discolouration of masonry and lime wall paintings. Arch. Microbiol. 2001, 176, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Gaylarde, C.C.; Ortega-Morales, B.O.; Bartolo-Pérez, P. Biogenic black crusts on buildings in unpolluted environments. Curr. Microbiol. 2007, 54, 162–166. [Google Scholar] [CrossRef]
- Gómez-Cornelio, S.; Mendoza-Vega, J.; Gaylarde, C.C.; Reyes-Estebanez, M.; Morón-Ríos, A.; De la Rosa, S.D.C.; Ortega-Morales, B.O. Succession of fungi colonizing porous and compact limestone exposed to subtropical environments. Fungal Biol. 2012, 116, 1064–1072. [Google Scholar] [CrossRef]
- Ortega-Morales, B.O.; Gaylarde, C.; Anaya-Hernández, A.; Chan-Bacab, M.J.; De la Rosa-García, S.C.; Arano-Recio, D.; Montero, M.J. Orientation affects Trentepohlia-dominated biofilms on Mayan monuments of the Rio Bec style. Int. Biodeterior. Biodegrad. 2013, 84, 351–356. [Google Scholar] [CrossRef]
- Basu, S.; Orr, S.A.; Aktas, Y.D. A geological perspective on climate change and building stone deterioration in London: Implications for urban stone-built heritage research and management. Atmosphere 2020, 11, 788. [Google Scholar] [CrossRef]
- Palla, F. Blue-Biotechnology and Biocleaning of Historic-Artistic Artifacts. Conserv. Sci. Cult. Herit. 2016, 16, 185–196. [Google Scholar]
- Ziegenbalg, G.; Brummer, K.; Pianski, J. Nano-Lime—A new material for the consolidation and conservation of historic mortars. In Proceedings of the 2nd Historic Mortars Conference HMC10 and RILEM TC 203-RHM Final Workshop, Prague, Czech Republic, 22–24 September 2010. [Google Scholar]
- Zárraga, R.; Cervantes, J.; Salazar-Hernandez, C.; Wheeler, G. Effect of the addition of hydroxyl-terminated polydimethylsiloxane to TEOS-based stone consolidants. J. Cult. Herit. 2010, 11, 138–144. [Google Scholar] [CrossRef]
- Favaro, M.; Ossola, F.; Toamsin, P.; Vigato, P.A.; Rossetto, G.; El Habra, N.; Casarin, M. A novel approach to compatible and durable consolidation of limestone. In Proceedings of the 11th International Congress on Deterioration and Conservation of Stone, Torun, Poland, 15–20 September 2008; pp. 865–872. [Google Scholar]
- Jang, J.J.; Matero, F.G. Performance evaluation of commercial nanolime as a consolidant for friable lime-based plaster. J. Am. Inst. Conserv. 2018, 57, 95–111. [Google Scholar] [CrossRef] [Green Version]
- Pozo-Antonio, J.S.; Otero, J.; Alonso, P.; Mas i Baeberà, X. Nanolime- and nanosilica-based consolidants applied on heated granite and limestone: Effectiveness and durability. Constr. Build. Mater. 2019, 201, 852–870. [Google Scholar] [CrossRef]
- Tortora, L.; Di Carlo, G.; Mosquera, M.J.; Ingo, G.M. Nanoscience and nanomaterials for the knowledge and conservation of cultural heritage. Front. Mater. 2020, 7, 372. [Google Scholar] [CrossRef]
- Becerra, J.; Zaderenko, A.P.; Ortiz, R.; Karapanagiotis, I.; Ortiz, P. Comparison of the performance of a novel nanolime doped with ZnO quantum dots with common consolidants for historical carbonate stone buildings. Appl. Clay Sci. 2020, 195, 105732. [Google Scholar] [CrossRef]
- Price, C.A.; Doehne, E. Stone Conservation: An Overview of Current Research, 2nd ed.; Getty Conservation Institute: Los Angeles, CA, USA, 2010; pp. 1–175. [Google Scholar]
- Delgado-Rodrigues, J. Stone consolidation: Research and practice. In Proceedings of the International Symposium on Works of Art and Conservation Science Today, Thessaloniki, Greece, 26–28 November 2010; pp. 1–8. [Google Scholar]
- Caneva, G.; Nugari, M. Evaluation of Escobilla’s mucilago treatments in the archaeological sites of Joya de Ceren (El Salvador). Biodeterior. Biodegrad. Lat. Am. 2005, 5, 59–64. [Google Scholar]
- Kita, Y. The functions of vegetable mucilage in lime and earth mortars—A review. In Proceedings of the HMC2013-3rd Historic Mortars Conference, Glasgow, Scotland, UK, 11–14 September 2013; pp. 1–6. [Google Scholar]
- Wheeler, G. Alkoxysilanes and the Consolidation of Stone; The Getty Conservation Institute: Los Angeles, CA, USA, 2005; pp. 55–64. [Google Scholar]
- Negri, A.; Nervo, M.; Di Marcello, S.; Castelli, D. Consolidation and Adhesion of Pictorial Layers on a Stone Substrate. The Study Case of the Virgin with the Child from Palazzo Madama, in Turin. Coatings 2021, 11, 624. [Google Scholar] [CrossRef]
- Alisi, C.; Bacchetta, L.; Bojorquez, E.; Falconieri, M.; Gagliardi, S.; Insaurralde, M.; Tatì, A. Mucilages from Different Plant Species Affect the Characteristics of Bio-Mortars for Restoration. Coatings 2021, 11, 75. [Google Scholar] [CrossRef]
- Fierascu, R.C.; Doni, M.; Fierascu, I. Selected aspects regarding the restoration/conservation of traditional wood and masonry building materials: A short overview of the last decade findings. Appl. Sci. 2020, 10, 1164. [Google Scholar] [CrossRef] [Green Version]
- Guihéneuf, S.; Rangeard, D.; Perrot, A.; Cusin, T.; Collet, F.; Prétot, S. Effect of bio-stabilizers on capillary absorption and water vapour transfer into raw earth. Mater. Struct. 2020, 53, 1–18. [Google Scholar] [CrossRef]
- Jroundi, F.; Schiro, M.; Ruiz-Agudo, E.; Elert, K.; Martín-Sánchez, I.; González-Muñoz, M.; Rodriguez-Navarro, C. Protection and consolidation of stone heritage by self-inoculation with indigenous carbonatogenic bacterial communities. Nat. Commun. 2017, 8, 279. [Google Scholar] [CrossRef] [Green Version]
- Sondi, I.; Juraěić, M. Whiting events and the formation of aragonite in Mediterranean karstic marine lakes: New evidence on its biologically induced inorganic origin. Sedimentology 2010, 57, 85–95. [Google Scholar] [CrossRef]
- Zhu, T.; Dittrich, M. Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: A review. Front. Bioeng. Biotechnol. 2016, 4, 4. [Google Scholar] [CrossRef] [Green Version]
- Dhami, N.K.; Reddy, M.S.; Mukherjee, A. Application of calcifying bacteria for remediation of stones and cultural heritages. Front. Microbiol. 2014, 5, 304. [Google Scholar] [CrossRef] [PubMed]
- Anbu, P.; Kang, C.H.; Shin, Y.J.; So, J.S. Formations of calcium carbonate minerals by bacteria and its multiple applications. Springerplus 2016, 5, 250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nazel, T. Bioconsolidation of stone monuments. An overview. Rest. Build. Monum. 2016, 22, 37–45. [Google Scholar] [CrossRef]
- Castro-Alonso, M.J.; Montañez-Hernandez, L.E.; Sanchez-Muñoz, M.A. Microbially induced calcium carbonate precipitation (MICP) and its potential in bioconcrete: Microbiological and molecular concepts. Front. Mater. 2019, 6, 126. [Google Scholar] [CrossRef]
- Marvasi, M.; Mastromei, G.; Perito, B. Bacterial calcium carbonate mineralization in situ strategies for conservation of stone artworks: From cell components to microbial community. Front. Microbiol. 2020, 11, 1386. [Google Scholar] [CrossRef] [PubMed]
- Jroundi, F.; Gómez-Suaga, P.; Jimenez-Lopez, C.; González-Muñoz, M.T.; Fernández-Vivas, M.A. Stone-isolated carbonatogenic bacteria as inoculants in bioconsolidation treatments for historical limestone. Sci. Total Environ. 2012, 425, 89–98. [Google Scholar] [CrossRef]
- López-Moreno, A.; Sepúlveda-Sánchez, J.D.; Alonso-Guzmán, E.M.; Le Borgne, S. Calcium carbonate precipitation by heterotrophic bacteria isolated from biofilms formed on deteriorated ignimbrite stones: Influence of calcium on EPS production and biofilm formation by these isolates. Biofouling 2014, 30, 547–560. [Google Scholar] [CrossRef]
- Castanier, S.; Le Métayer-Levrel, G.; Orial, G.; Loubière, J.F.; Perthuisot, J.P. Bacterial carbonatogenesis and applications to preservation and restoration of historic property. In Of Microbes and Art; Springer: Boston, MA, USA, 2000; pp. 203–218. [Google Scholar] [CrossRef]
- Le Metayer-Levrel, G.; Castanier, S.; Orial, G.; Loubière, J.F.; Perthuisot, J.P. Applications of bacterial carbonatogenesis to the protection and regeneration of limestones in buildings and historic patrimony. Sediment. Geol. 1999, 126, 25–34. [Google Scholar] [CrossRef]
- Andrei, A.Ş.; Păuşan, M.R.; Tămaş, T.; Har, N.; Barbu-Tudoran, L.; Leopold, N.; Banciu, H. Diversity and biomineralization potential of the epilithic bacterial communities inhabiting the oldest public stone monument of Cluj-Napoca (Transylvania, Romania). Front. Microbiol. 2017, 8, 372. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Fang, C.; Kawasaki, S.; Huang, M.; Achal, V. Bio-consolidation of cracks in masonry cement mortars by Acinetobacter sp. SC4 isolated from a karst cave. Int. Biodeterior. Biodegrad. 2019, 141, 94–100. [Google Scholar] [CrossRef]
- Meier, A.; Kastner, A.; Harries, D.; Wierzbicka-Wieczorek, M.; Majzlan, J.; Büchel, G.; Kothe, E. Calcium carbonates: Induced biomineralization with controlled macromorphology. Biogeosciences 2017, 14, 4867–4878. [Google Scholar] [CrossRef] [Green Version]
- Ferral-Pérez, H.; Galicia-García, M.; Alvarado-Tenorio, B.; Izaguirre-Pompa, A.; Aguirre-Ramírez, M. Novel method to achieve crystallinity of calcite by Bacillus subtilis in coupled and non-coupled calcium-carbon sources. AMB Express 2020, 10, 174. [Google Scholar] [CrossRef]
- Tanul, S. Biomineralization Using Synechococcus Pevalleikii and Its Applications in Building Material. Master’s Thesis, Thapar University, Patialia, India, 2017. [Google Scholar]
- Zhu, T.; Lin, Y.; Lu, X.; Dittrich, M. Assessment of cyanobacterial species for carbonate precipitation on mortar surface under different conditions. Ecol. Eng. 2018, 120, 154–163. [Google Scholar] [CrossRef]
- Zhu, T.; Lu, X.; Dittrich, M. Calcification on mortar by live and UV-killed biofilm-forming cyanobacterial Gloeocapsa PCC. Constr. Build. Mater. 2017, 146, 43–53. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, B.; Ge, Q.; Yang, X. Calcium carbonate precipitation induced by calcifying bacteria in culture experiments: Influence of the medium on morphology and mineralogy. Int. Biodeterior. Biodegrad. 2018, 134, 83–92. [Google Scholar] [CrossRef]
- Andreolli, M.; Lampis, S.; Bernardi, P.; Calò, S.; Vallini, G. Bacteria from black crusts on stone monuments can precipitate CaCO3 allowing the development of a new bio-consolidation protocol for ornamental stone. Int. Biodeterior. Biodegrad. 2020, 153, 105031. [Google Scholar] [CrossRef]
- Micallef, R.; Vella, D.; Sinagra, E.; Zammit, G. Biocalcifying Bacillus subtilis cells effectively consolidate deteriorated Globigerina limestone. J. Ind. Microbiol. Biotechnol. 2016, 43, 941–952. [Google Scholar] [CrossRef]
- Shirakawa, M.A.; Cincotto, M.A.; Atencio, D.; Gaylarde, C.C.; John, V.M. Effect of culture medium on biocalcification by Pseudomonas putida, Lysinibacillus sphaericus and Bacillus subtilis. Braz. J. Microbiol. 2011, 42, 499–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daskalakis, M.; Magoulas, A.; Kotoulas, G.; Catsikis, I.; Bakolas, A.; Karageorgis, A.P.; Mavridou, A.; Doulia, D.; Rigas, F. Pseudomonas, Pantoea and Cupriavidus isolates induce calcium carbonate precipitation for biorestoration of ornamental stone. J. Appl. Microbiol. 2013, 115, 409–423. [Google Scholar] [CrossRef]
- Montaño-Salazar, S.M.; Lizarazo-Marriaga, J.; Brandão, P.F.B. Isolation and potential biocementation of calcite precipitation inducing bacteria from Colombian buildings. Curr. Microbiol. 2018, 75, 256–265. [Google Scholar] [CrossRef]
- Golovkina, D.A.; Zhurishkina, E.V.; Ivanova, L.A.; Baranchikov, A.E.; Sokolov, A.Y.; Bobrov, K.S.; Masharsky, A.E.; Tsvigun, N.V.; Kopitsa, G.P.; Kulminskaya, A.A. Calcifying bacteria flexibility in induction of CaCO3 mineralization. Life 2020, 10, 317. [Google Scholar] [CrossRef]
- Keskin, T.; Deniz, I.; Aric, A.; Yilmazsoy, B.T.; Andic-Cakir, O.; Erdogan, A.; Altun, D.; Tokuç, A.; Demirci, B.F.; Sendemir-Urkmez, A.; et al. Development of ecological biodesign products by bacterial biocalcification. Eur. J. Eng. Nat. Sci. 2019, 3, 17–25. [Google Scholar]
- Zamarreno, D.V.; Inkpen, R.; May, E. Carbonate crystals precipitated by freshwater bacteria and their use as a limestone consolidant. Appl. Environ. Microbiol. 2009, 75, 5981–5990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, C.; Kumari, D.; Zhu, X.; Achal, V. Role of fungal-mediated mineralization in biocementation of sand and its improved compressive strength. Int. Biodeterior. Biodegrad. 2018, 133, 216–220. [Google Scholar] [CrossRef]
- Li, T.; Hu, Y.; Zhang, B. Biomineralization induced by Colletotrichum acutatum: A potential strategy for cultural relic bioprotection. Front. Microbiol. 2018, 9, 1884. [Google Scholar] [CrossRef] [Green Version]
- Pasquale, V.; Fiore, S.; Hlayem, D.; Lettino, A.; Huertas, F.J.; Chianese, E.; Dumontet, S. Biomineralization of carbonates induced by the fungi Paecilomyces inflatus and Plectosphaerella cucumerina. Int. Biodeterior. Biodegrad. 2019, 140, 57–66. [Google Scholar] [CrossRef]
- Chuo, S.C.; Mohamed, S.F.; Mohd Setapar, S.H.; Ahmad, A.; Jawaid, M.; Wani, W.A.; Yaqoob, A.A.; Ibrahim, M.N.M. Insights into the current trends in the utilization of bacteria for microbially induced calcium carbonate precipitation. Materials 2020, 13, 4993. [Google Scholar] [CrossRef]
- Omoregie, A.I.; Ong, D.E.L.; Nissom, P.M. Assessing ureolytic bacteria with calcifying abilities isolated from limestone caves for biocalcification. Lett. Appl. Microbiol. 2018, 68, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Vincent, J.; Sabot, R.; Lanneluc, I.; Refait, P.; Turcry, P.; Mahieux, P.Y.; Jeannin, M.; Sablé, S. Biomineralization of calcium carbonate by marine bacterial strains isolated from calcareous deposits. Matér. Tech. 2020, 108, 302. [Google Scholar] [CrossRef]
- Wainwright, M. Oligotrophic growth of fungi: Stress or natural state? In Stress Tolerance of Fungi; Jennings, D.H., Ed.; Marcel Dekker: New York, NY, USA, 1993; pp. 127–144. [Google Scholar]
- Ortega-Morales, B.O.; Narváez-Zapata, J.; Reyes-Estebanez, M.; Quintana, P.; De la Rosa-García, S.C.; Bullen, H.; Gómez-Cornelio, S.; Chan-Bacab, M.J. Bioweathering potential of cultivable fungi associated with semi-arid surface microhabitats of Mayan buildings. Front. Microbiol. 2016, 7, 201. [Google Scholar] [CrossRef] [PubMed]
- Fry, J. Culture-Dependent Microbiology. In Microbial Diversity and Bioprospecting; Bull, A., Ed.; ASM Press: Washington, DC, USA, 2004; pp. 80–87. [Google Scholar]
- Chimienti, G.; Piredda, R.; Pepe, G.; van der Werf, I.D.; Sabbatini, L.; Crecchio, C.; Ricciuti, P.; D’Erchia, A.M.; Manzari, C.; Pesole, G. Profile of microbial communities on carbonate stones of the medieval church of San Leonardo di Siponto (Italy) by Illumina-based deep sequencing. Appl. Microbiol. Biotechnol. 2016, 100, 8537–8548. [Google Scholar] [CrossRef]
- Barabesi, C.; Galizzi, A.; Mastromei, G.; Rossi, M.; Tamburini, E.; Perito, B. Bacillus subtilis gene cluster involved in calcium carbonate biomineralization. J. Bacteriol. 2007, 189, 228–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marvasi, M.; Casillas-Santiago, L.M.; Henríquez, T.; Casillas-Martinez, L. Involvement of etfA gene during CaCO3 precipitation in Bacillus subtilis biofilm. Geomicrobiol. J. 2016, 34, 722–728. [Google Scholar] [CrossRef]
- Frandi, A.; Zucca, P.; Marvasi, M.; Mastromei, G.; Sanjust, E.; Perito, B. Bacillus subtilis fadB (ysiB) gene encodes an enoyl-CoA hydratase. Ann. Microbiol. 2011, 61, 371–374. [Google Scholar] [CrossRef]
- Perito, B.; Casillas, L.; Marvasi, M. Factors affecting formation of large calcite crystals (=1 mm) in Bacillus subtilis 168 biofilm. Geomicrobiol. J. 2018, 35, 385–391. [Google Scholar] [CrossRef]
- Lee, Y.S.; Park, W. Enhanced calcium carbonate-biofilm complex formation by alkali-generating Lysinibacillus boronitolerans YS11 and alkaliphilic Bacillus sp. AK13. AKAMB Express 2019, 9, 49. [Google Scholar] [CrossRef]
- Shraddha, G.; Darshan, M. Microbially induced calcite precipitation through urolytic organisms—A review. Int. J. Life Sci. 2019, 7, 133–139. [Google Scholar]
- Yu, X.; Zhan, Q.; Qian, C.; Ma, J.; Liang, Y. The optimal formulation of bio-carbonate and bio-magnesium phosphate cement to reduce ammonia emission. J. Clean. Prod. 2019, 240, 118156. [Google Scholar] [CrossRef]
- Dhami, N.K.; Mukherjee, A.; Reddy, M.S. Micrographical, minerological and nano-mechanical characterisation of microbial carbonates from urease and carbonic anhydrase producing bacteria. Ecol. Eng. 2016, 94, 443–454. [Google Scholar] [CrossRef]
- Jimenez-Lopez, C.; Jroundi, F.; Pascolini, C.; Rodriguez-Navarro, C.; Piñar-Lurrubia, G.; Rodriguez-Gallego, M.; González-Muñoz, M.T. Consolidation of quarry calcarenite by calcium carbonate precipitation induced by bacteria activated among the microbiota inhabiting the stone. Int. Biodeterior. Biodegrad. 2008, 62, 352–363. [Google Scholar] [CrossRef]
- Jroundi, F.; Elert, K.; Ruiz-Agudo, E.; González-Muñoz, M.T.; Rodriguez-Navarro, C. Bacterial diversity evolution in Maya plaster and stone following a bio-conservation treatment. Front. Microbiol. 2020, 11, 599144. [Google Scholar] [CrossRef]
- Sassoni, E.; Franzoni, E. An innovative phosphate-based consolidant for limestone. Part I: Effectiveness and compatibility in comparison with ethyl silicate. Constr. Build. Mater. 2014, 102, 918–930. [Google Scholar] [CrossRef]
- Bonazza, A.; Vidorni, G.; Natali, I.; Ciantelli, C.; Giosuè, C.; Tittarelli, F. Durability assessment to environmental impact of nano-structured consolidants on Carrara marble by field exposure tests. Sci. Total Environ. 2017, 575, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Perito, B.; Marvasi, M.; Barabesi, C.; Mastromei, G.; Bracci, S.; Vendrell, M.; Tiano, P. A Bacillus subtilis cell fraction (BCF) inducing calcium carbonate precipitation: Biotechnological perspectives for monumental stone reinforcement. J. Cult. Herit. 2014, 15, 345–351. [Google Scholar] [CrossRef]
- Douglas, S.; Beveridge, T.J. Mineral formation by bacteria in natural microbial communities. FEMS Microb. Ecol. 1998, 26, 79–88. [Google Scholar] [CrossRef]
- Ercole, C.; Bozzelli, P.; Altieri, F.; Cacchio, P.; Del Gallo, M. Calcium carbonate mineralization: Involvement of extracellular polymeric materials isolated from calcifying bacteria. Microsc. Microanal. 2012, 18, 829–839. [Google Scholar] [CrossRef] [PubMed]
- Oppenheimer-Shaanan, Y.; Sibony-Nevo, O.; Bloom-Ackermann, Z.; Suissa, R.; Steinberg, N.; Kartvelishvily, E.; Brumfeld, V.; Kolodkin-Gal, I. Spatio-temporal assembly of functional mineral scaffolds within microbial biofilms. NPJ Biofilms Microb. 2016, 2, 15031. [Google Scholar] [CrossRef] [PubMed]
- Beveridge, T.J.; Murray, R.G. Sites of metal deposition in the cell wall of Bacillus subtilis. J. Bacteriol. 1980, 141, 876–887. [Google Scholar] [CrossRef] [Green Version]
- Decho, A.W. Overview of biopolymer-induced mineralization: What goes on in biofilms? Ecol. Eng. 2010, 36, 137–144. [Google Scholar] [CrossRef]
- Maciejewska, M.; Adam, D.; Naômé, A.; Martinet, L.; Tenconi, E.; Całusińska, M.; Delfosse, P.; Hanikenne, M.; Baurain, D.; Compère, P.; et al. Assessment of the potential role of Streptomyces in cave moonmilk formation. Front. Microbiol. 2017, 8, 1181. [Google Scholar] [CrossRef] [Green Version]
- Ortega-Villamagua, E.; Gudiño-Gomezjurado, M.; Palma-Cando, A. Microbiologically induced carbonate precipitation in the restoration and conservation of cultural heritage materials. Molecules 2020, 25, 5499. [Google Scholar] [CrossRef]
- De Muynck, W.; Leuridan, S.; Van Loo, D.; Verbeken, K.; Cnudde, V.; De Beile, N.; Verstraete, W. Influence of pore structure on the effectiveness of a biogenic carbonate surface treatment for limestone conservation. Appl. Environ. Microbiol. 2011, 77, 6808–6820. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Navarro, C.; Jimenez-Lopez, C.; Rodriguez-Navarro, A.; González-Muñoz, M.T.; Rodriguez-Gallego, M. Bacterially mediated mineralization of vaterite. Geochim. Cosmochim. Acta 2007, 71, 1197–1213. [Google Scholar] [CrossRef]
- Rusznyák, A.; Akob, D.M.; Nietzsche, S.; Eusterhues, K.; Totsche, K.U.; Neu, T.R.; Frosch, T.; Popp, J.; Keiner, R.; Geletneky, J.; et al. Calcite biomineralization by bacterial isolates from the recently discovered pristine karstic herrenberg cave. Appl. Environ. Microbiol. 2012, 78, 1157–1167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhami, N.K.; Reddy, M.S.; Mukherjee, A. Synergistic role of bacterial urease and carbonic anhydrase in carbonate mineralization. Appl. Biochem. Biotechnol. 2014, 172, 2552–2561. [Google Scholar] [CrossRef]
- Stocks-Fischer, S.; Galinat, J.K.; Bang, S.S. Microbiological precipitation of CaCO. Soil Biol. Biochem. 1999, 31, 1563–1571. [Google Scholar] [CrossRef]
- Okwadha, G.D.O.; Li, J. Optimum conditions for microbial carbonate precipitation. Chemosphere 2010, 81, 1143–1148. [Google Scholar] [CrossRef] [PubMed]
- Jroundi, F.; Gonzalez-Muñoz, M.T.; Garcia-Bueno, A.; Rodriguez-Navarro, C. Consolidation of archaeological gypsum plaster by bacterial biomineralization of calcium carbonate. Acta Biomater. 2014, 10, 3844–3854. [Google Scholar] [CrossRef] [PubMed]
- Gebauer, D.; Gunawidjaja, P.N.; Ko, J.Y.P.; Bacsik, Z.; Aziz, B.; Liu, L.; Hu, Y.; Berström, L.; Tai, C.W.; Sham, T.K.; et al. Proto-calcite and proto-vaterite in amorphous calcium carbonates. Angew. Chem. Int. Ed. 2010, 49, 8889–8891. [Google Scholar] [CrossRef]
- Dhami, N.K.; Reddy, M.S.; Mukherjee, A. Biomineralization of calcium carbonate polymorphs by the bacterial strains isolated from calcareous sites. J. Microbiol. Biotechnol. 2013, 23, 707–714. [Google Scholar] [CrossRef] [Green Version]
- Dhami, N.K.; Mukherjee, A.; Watkin, E.L.J. Microbial diversity and mineralogical-mechanical properties of calcitic cave speleothems in natural and in vitro biomineralization conditions. Front. Microbiol. 2018, 9, 40. [Google Scholar] [CrossRef]
- Favero-Longo, S.E.; Viles, H.A. A review of the nature, role and control of lithobionts on stone cultural heritage: Weighing-up and managing biodeterioration and bioprotection. World J. Microbiol. Biotechnol. 2020, 36, 100. [Google Scholar] [CrossRef]
- Pinna, D.; Galeotti, M.; Perito, B.; Daly, G.; Salvadori, B. In situ long-term monitoring of recolonization by fungi and lichens after innovative and traditional conservative treatments of archaeological stones in Fiesole (Italy). Int. Biodeterior. Biodegrad. 2018, 132, 49–58. [Google Scholar] [CrossRef]
- Jroundi, F.; Gonzalez-Muñoz, M.T.; Sterflinger, K.; Piñar, G. Molecular tools for monitoring the ecological sustainability of a stone bio-consolidation treatment at the Royal Chapel, Granada. PLoS ONE 2015, 10, e0132465. [Google Scholar] [CrossRef]
- Shirakawa, M.A.; John, V.M.; De Belie, N.; Alves, J.V.; Pinto, J.B.; Gaylarde, C.C. Susceptibility of biocalcite-modified fiber cement to biodeterioration. Int. Biodeterior. Biodegrad. 2015, 103, 215–220. [Google Scholar] [CrossRef]
- Balloi, A.; Palla, F. Biocleaning. In Biotechnology and Conservation of Cultural Heritage; Palla, F., Barresi, G., Eds.; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Bosch-Roig, P.; Ranalli, G. The safety of biocleaning technologies for cultural heritage. Front. Microbiol. 2014, 5, 155. [Google Scholar] [CrossRef] [Green Version]
- Warscheid, T.; Braams, J. Biodeterioration of stone: A review. Int. Biodeterior. Biodegrad. 2000, 46, 343–368. [Google Scholar] [CrossRef]
- Gauri, K.L.; Parks, L.; Jaynes, J.; Atlas, R. Removal of sulfated-crust from marble using sulfate-reducing bacteria. In Proceedings of the International Conference Stone Cleaning and the Nature, Soiling and Decay Mechanisms of Stone, Edinburgh, UK, 14–16 April 1992; pp. 160–165. [Google Scholar]
- Scarascia, G.; Lehmann, R.; Machuca, L.L.; Morris, C.; Cheng, K.Y.; Kaksonen, A.; Hong, P.Y. Effect of quorum sensing on the ability of Desulfovibrio vulgaris to form biofilms and to biocorrode carbon steel in saline conditions. Appl. Environ. Microbiol. 2020, 86, e01664-19. [Google Scholar] [CrossRef]
- Bosch-Roig, P.; Lustrato, G.; Zanardini, E.; Ranalli, G. Biocleaning of cultural heritage stone surfaces and frescoes: Which delivery system can be the most appropriate? Ann. Microbiol. 2015, 65, 1227–1241. [Google Scholar] [CrossRef]
- Cappitelli, F.; Zanardini, E.; Ranalli, G.; Mello, E.; Daffonchio, D.; Sorlini, C. Improved methodology for bioremoval of black crusts on historical stone artworks by use of sulfate-reducing bacteria. Appl. Environ. Microbiol. 2006, 72, 3733–3737. [Google Scholar] [CrossRef] [Green Version]
- Gioventù, E.; Lorenzi, P. Bio-removal of black crust from marble surface: Comparison with traditional methodologies and application on a sculpture from the Florence’s English Cemetery. Procedia Chem. 2013, 8, 123–129. [Google Scholar] [CrossRef] [Green Version]
- Elhagrassy, A.F.; Hakeem, A. Comparative study of biological cleaning and laser techniques for conservation of weathered stone in Failaka Island, Kuwait. Sci. Cult. 2018, 4, 43–50. [Google Scholar]
- Ranalli, G.; Matteini, M.; Tosini, I.; Zanardini, E.; Sorlini, C. Bioremediation of cultural heritage: Removal of sulphates, nitrates and organic substances. In Of Microbes and Art; Springer: Boston, MA, USA, 2000; pp. 231–245. [Google Scholar] [CrossRef]
- Ranalli, G.; Chiavarini, M.; Guidetti, V.; Marsala, F.; Matteini, M.; Zanardini, E.; Sorlini, C. The use of microorganisms for the removal of nitrates and organic substances on artistic stoneworks. Int. Biodeterior. Biodegrad. 1996, 40, 255–261. [Google Scholar] [CrossRef]
- Alfano, G.; Lustrato, G.; Belli, C.; Zanardini, E.; Cappitelli, F.; Mello, E.; Sorlini, C.; Ranalli, G. The bioremoval of nitrate and sulfate alterations on artistic stonework: The case-study of Matera Cathedral after six years from the treatment. Int. Biodeterior. Biodegrad. 2011, 65, 1004–1011. [Google Scholar] [CrossRef]
- Roig, P.B.; Ros, J.L.R.; Montes Estellés, R. Biocleaning of nitrate alterations on wall paintings by Pseudomonas stutzeri. Int. Biodeterior. Biodegrad. 2013, 84, 266–274. [Google Scholar] [CrossRef] [Green Version]
- Romano, I.; Abbate, M.; Poli, A.; D’Orazio, L. Bio-cleaning of nitrate salt efflorescence on stone samples using extremophilic bacteria. Sci. Rep. 2019, 9, 1668. [Google Scholar] [CrossRef] [Green Version]
- Soffritti, I.; D’Accolti, M.; Lanzoni, L.; Volta, A.; Bisi, M.; Mazzacane, S.; Caselli, E. The potential use of microorganisms as restorative agents: An update. Sustainability 2019, 11, 3853. [Google Scholar] [CrossRef] [Green Version]
- Mazzuca, C.; Poggi, G.; Bonelli, N.; Micheli, L.; Baglioni, P.; Palleschi, A. Innovative chemical gels meet enzymes: A smart combination for cleaning paper artworks. J. Colloid Interface Sci. 2017, 502, 153–164. [Google Scholar] [CrossRef]
- Ranalli, G.; Alfano, G.; Belli, C.; Lustrato, G.; Colombini, M.P.; Bonaduce, I.; Zanardini, E.; Abbrucato, P.; Cappitelli, F.; Sorlini, C. Biotechnology applied to cultural heritage: Biorestoration of frescoes using viable bacterial cells and enzymes. J. Appl. Microbiol. 2005, 98, 73–83. [Google Scholar] [CrossRef]
- Ranalli, G.; Zanardini, E.; Rampazzi, L.; Corti, C.; Andreotti, A.; Colombini, P.; Bosch-Roig, P.; Lustrato, G.; Giantomassi, C.; Zari, D.; et al. Onsite advanced biocleaning system on historical wall paintings using new agar-gauze bacteria gel. J. Appl. Microbiol. 2019, 126, 1785–1796. [Google Scholar] [CrossRef]
- Kohli, R. Chapter 15—Application of microbial cleaning technology for removal of surface contamination. Appl. Clean. Tech. 2019, 11, 591–617. [Google Scholar]
- Jeszeová, L.; Bauerová-Hlinková, V.; Baráth, P.; Puškárová, A.; Bučková, M.; Kraková, L.; Pangallo, D. Biochemical and proteomic characterization of the extracellular enzymatic preparate of Exiguobacterium undae, suitable for efficient animal glue removal. Appl. Microbiol. Biotechnol. 2018, 102, 6525–6536. [Google Scholar] [CrossRef]
- Bosch-Roig, P.; Pozo-Antonio, J.S.; Sanmartín, P. Identification of the best-performing novel microbial strains from naturally-aged graffiti for biocleaning research. Int. Biodeterior. Biodegrad. 2021, 159, 105206. [Google Scholar] [CrossRef]
- Sanmartín, P.; DeAraujo, A.; Vasanthakumar, A.; Mitchell, R. Feasibility study involving the search for natural strains of microorganisms capable of degrading graffiti from heritage materials. Int. Biodeterior. Biodegrad. 2015, 103, 186–190. [Google Scholar] [CrossRef]
- Sanmartín, P.; Bosch-Roig, P. Biocleaning to remove graffiti: A real possibility? advances towards a complete protocol of action. Coatings 2019, 9, 104. [Google Scholar] [CrossRef] [Green Version]
- Germinario, G.; van der Werf, I.D.; Palazzo, G.; Regidor Ros, J.L.; Montes-Estelles, R.M.; Sabbatini, L. Bioremoval of marker pen inks by exploiting lipase hydrolysis. Prog. Org. Coat. 2017, 110, 162–171. [Google Scholar] [CrossRef]
- Germinario, G.; Garrappa, S.; D’Ambrosio, V.; van der Werf, I.D.; Sabbatini, L. Chemical composition of felt-tip pen inks. Anal. Bioanal. Chem. 2018, 410, 1079–1094. [Google Scholar] [CrossRef]
- Silva, M.; Rosado, T.; Teixeira, D.; Candeias, A.; Caldeira, A.T. Green mitigation strategy for cultural heritage: Bacterial potential for biocide production. Environ. Sci. Pollut. Res. 2017, 24, 4871–4881. [Google Scholar] [CrossRef] [Green Version]
- Karygianni, L.; Ren, Z.; Koo, H.; Thurnheer, T. Biofilm matrixome: Extracellular components in structured microbial communities. Trends Microbiol. 2020, 28, 668–681. [Google Scholar] [CrossRef]
- Valentini, F.; Diamanti, A.; Palleschi, G. New bio-cleaning strategies on porous building materials affected by biodeterioration event. Appl. Surf. Sci. 2010, 256, 6550–6563. [Google Scholar] [CrossRef]
- Masi, M.; Petraretti, M.; De Natale, A.; Pollio, A.; Evidente, A. Fungal metabolites with antagonistic activity against fungi of lithic substrata. Biomolecules 2021, 11, 295. [Google Scholar] [CrossRef] [PubMed]
- Marin, E.; Vaccaro, C.; Leis, M. Biotechnology applied to historic stoneworks conservation: Testing the potential harmfulness of two biological biocides. Int. J. Conserv. Sci. 2016, 7, 227–238. [Google Scholar]
- Huang, R.; Li, G.; Zhang, J.; Yang, L.; Che, H.J.; Jiang, D.H.; Huang, H.C. Control of postharvest Botrytis fruit rot of strawberry by volatile organic compounds of Candida intermedia. Phytopathology 2011, 101, 859–869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopes, M.R.; Klein, M.N.; Ferraz, L.P.; da Silva, A.C.; Kupper, K.C. Saccharomyces cerevisiae: A novel and efficient biological control agent for Colletotrichum acutatum during pre-harvest. Microbiol. Res. 2015, 175, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Pope, G.; Meierding, T.; Paradise, T. Geomorphology’s role in the study of weathering of cultural stone. Geomorphology 2002, 47, 211–225. [Google Scholar] [CrossRef]
Organisms | Isolation Source/ Habitat | Testing Method | Reference |
---|---|---|---|
Bacillus, Pseudomonas, Brevibacterium, Streptomyces, Stenotrophomonas genera | Degraded limestone monument (Romania) | Crystal formation by isolated strains on solid medium; crystal identification by FTIR, XRD and SEM | [36] |
Isolated during the course of the study | |||
Acinetobacter sp. | Cave (Yixing Shanjuan, China) | Consolidation of artificial cracks in masonry cement mortars; compressive strength, water absorption, SEM, XRD, thermogravimetry In vitro consolidation with Mixococcus xanthus; chemical analysis of calcarenite stone | [37] |
Carbonate stone (Spain) | |||
Isolated during the course of the study | [32] | ||
Agrococcus jejuensis sMM51 (Soil, Middle Muschelkalk) | Limestone-associated groundwater, rock and soil (Germany) | Crystal formation in liquid culture; crystal morphology by XRD, EDS and SEM | [38] |
Bacillus muralis rLMd (Rock, Lower Muschelkalk) | The strains are deposited with the Jena Microbial Resource Collection (Jena, Germany) | ||
Bacillus sp. rMM9 (Rock, Middle Muschelkalk) | |||
Bacillus subtilis 168 (®27370) | ATCC: American Type Culture Collection, Manassas (VA) USA | Crystal formation on solid medium; detailed crystal analysis | [39] |
Indigenous bacterial community | Salt-damaged carbonate stone in San Jeronimo Monastery, Spain. Isolated during the course of the study | Consolidation of originating monument; drilling resistance, SEM | [24] |
Synechococcus pevalleikii (live and dead) | National marine laboratories, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India | Concrete cubes in vitro. U-V treated cells gave better compressive strength and lower water uptake | [40] |
Synechocystis (6803) | PCC: Pasteur Culture Collection (Paris), France | Morphological and spectroscopic changes of mortar surfaces | [41] |
Gloeocapsa (73106). | PCC: Pasteur Culture Collection (Paris), France | Measurement of compressive strength, water absorption and porosity of treated mortar | [42] |
Pseudomonas sp. (N9), Bacillus cereus (T6), Lysinibacillus sphaericus (T5), Bacillus sp. | Historic white marble (China) | Crystal formation in solid and liquid culture by XRD analysis | [43] |
Isolated during the course of the study | |||
Bacillus sp., Micrococcus sp. | Black crusts on limestone buildings | Bio-cementation on limestone slabs; Bio-consolidation of fragmented stones (Church of Santa Maria dei Miracoli, Venice); SEM, EDX | [44] |
Isolated during the course of the study | |||
Bacillus cereus | Natural carbonate rock | First in situ consolidation attempt (Saint Médard Church, Thouars, France); SEM, water absortion, surface roughness, colorimetry | [45] |
Isolated during the course of the study | |||
Bacillus subtilis LMG 3589 | Belgian Co-ordinated Collections of Microorganisms | Consolidation of deteriorated Globigerina limestone in Malta; drilling resistance, water absorption, salt deterioration, porosity | [46] |
Lysinibacillus sphaericus, Bacillus subtilis, Pseudomonas putida | INQCSS: Instituto Nacional de Controle de Qualidade em Saúde. Brazilian Culture Collection (Rio de Janeiro, Brazil) | Production of CaCO3 in growth medium | [47] |
Pseudomonas, Pantoea, Cupriavidus | Ancient marble quarry in Athens, Greece | SEM, ERD and FTIR analyses of treated marble from same quarry | [48] |
Isolated during the course of the study | |||
Psychrobacillus psycrodurans | Mortar and concrete samples (National University of Colombia—Bogota, buildings) | Biocementation tests on mortar cubes; SEM, XRD, compressive strength | [49] |
(IBUN: Institute of Biotechnology of the National University of Colombia. Collection of microorganisms (Bogotá, Colombia)) | |||
B. licheniformis DSMZ 8782, B. cereus 4b, S. epidermidis 4a, M. luteus BS52, M. luteus 6 | DSMZ: German Collection of Microorganisms and Cell Cultures GmbH (Brunswick, Germany) | Repairing microcracks in cement, calcium carbonate precipitation | [50] |
Collection of the Enzymology laboratory of B.P. Konstantinov Petersburg, Nuclear Physics Institute NRC “Kurchatov Institute” (Moscow, Russia) | |||
Sporosarcina pasteurii | DSMZ: German Collection of Microorganisms and Cell Cultures GmbH (Brunswick, Germany) | 3-D printing using sand; hardening tests | [51] |
Pseudomonas (isolates D2 and F2) and Acinetobacter (isolate B14) | Freshwater sessile bacteria | Histological and fluorescence staining determination of cell viability inside carbonate crystals, and pore size reduction in limestone by image analysis. | [52] |
Isolated during the course of the study | |||
Penicillium chrysogenum CS1 (Cement Sludge) | Isolated from Cement sludge | Cementation in sand column to form sandstone; compressive strength | [53] |
Isolated during the course of the study | |||
Colletotrichum acutatum | Diseased fruit crops | Inoculation on limestone; SEM, EDX, XRD | [54] |
Isolated during the course of the study | |||
Paecilomyces inflatus, Plectosphaerella cucumerina. | Stalactite growing from a concrete ceiling | SEM and XRD of carbonate crystals associated with hyphal growth in broth | [55] |
Isolated during the course of the study |
Consolidating Properties | Consolidation Action | Substrate | Consolidation Treatments | Evaluation of Treatment |
---|---|---|---|---|
Effectiveness | Penetration depth | Marble, limestone, and lime-based mortars | Phosphate treatment based on Hydroxyapatite (HAP) Ethyl silicate (ES) | Scanning electron microscopy (SEM) |
Compatibility | Morphology and microstructure of samples resulting from applied products | Marble | Nano-solution of calcium tetrahydrofurfuryloxide (Ca (OTHF)2) | Optical Microscopy (OM) and Scanning Electron Microscopy coupled with Energy Dispersive X-ray spectroscopy (SEM-EDX) |
Effectiveness | Mechanical properties: compressive strength, tensile strength, bending strength, modulus of elasticity, ultrasonic pulse velocity, abrasion loss, surface hardness. | Marble, limestone, and lime-based mortars | HAP ES | For example, tensile strength (σt) by the Brazilian splitting test using an Amsler-Wolpert loading machine |
Effectiveness | Hardness of the substrate; Increase in mechanical strength; penetration depth of treatment | Limestone/lime based mortar | Nanolime | Drilling Resistance Measurement System (DRMS) |
Compatibility | Color changes induced by the treatment | Limestone/ Marble | HAP/nano-solution of calcium tetrahydrofurfuryloxide (Ca (OTHF)2) | Spectrophotometer Konica Minolta CM-700d to measure CIEL*a*b* coordinates |
Compatibility | Newly formed phases and secondary by-products | Marble, limestone, and lime-based mortars | HAP ES | Fourier transform infrared spectroscopy (FT-IR) |
Compatibility | Microstructure: variations in open porosity and pore size distribution after the treatment | Marble, limestone, and lime-based mortars | HAP ES | Mercury intrusion porosimetry (MIP) |
Compatibility | Thermal behavior: samples subjected to thermal cycles (heating–cooling cycle) | Marble, limestone, and lime-based mortars | HAP ES | Use of dilatometer L75/30/C/W Ceramic Instruments |
Durability | Accelerated weathering cycles: Wetting–drying, freezing–thawing and salt crystallization cycles | Marble, limestone, and lime-based mortars | HAP ES | European EN 12371 and Italian UNI 11186 for freeze–thaw test, European EN 12370, RILEM MS-A.1 and RILEM MS-A.2 for salt weathering |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortega-Morales, B.O.; Gaylarde, C.C. Bioconservation of Historic Stone Buildings—An Updated Review. Appl. Sci. 2021, 11, 5695. https://doi.org/10.3390/app11125695
Ortega-Morales BO, Gaylarde CC. Bioconservation of Historic Stone Buildings—An Updated Review. Applied Sciences. 2021; 11(12):5695. https://doi.org/10.3390/app11125695
Chicago/Turabian StyleOrtega-Morales, Benjamín Otto, and Christine Claire Gaylarde. 2021. "Bioconservation of Historic Stone Buildings—An Updated Review" Applied Sciences 11, no. 12: 5695. https://doi.org/10.3390/app11125695
APA StyleOrtega-Morales, B. O., & Gaylarde, C. C. (2021). Bioconservation of Historic Stone Buildings—An Updated Review. Applied Sciences, 11(12), 5695. https://doi.org/10.3390/app11125695