A New Method to Verify the Measurement Speed and Accuracy of Frequency Modulated Interferometers
Abstract
:1. Introduction
2. Methodology
3. Experiments and Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peng, K.; Yu, Z.; Liu, X.; Chen, Z.; Pu, H. Features of capacitive displacement sensing that provide high-accuracy measurements with reduced manufacturing precision. IEEE Trans. Ind. Electron. 2017, 64, 7377–7386. [Google Scholar] [CrossRef]
- Ye, Y.; Zhang, C.; He, C.; Wang, X.; Huang, J.; Deng, J. A review on applications of capacitive displacement sensing for capacitive proximity sensor. IEEE Access 2020, 8, 45325–45342. [Google Scholar] [CrossRef]
- Chi, C.; Sun, X.; Xue, N.; Li, T.; Liu, C. Recent progress in technologies for tactile sensors. Sensors 2018, 18, 948. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Zhao, S.; Zheng, Q.; Lin, L. Absolute capacitive grating displacement measuring system with both high-precision and long-range. Sens. Actuators A Phys. 2019, 295, 11–22. [Google Scholar] [CrossRef]
- Ye, G.; Liu, H.; Ban, Y.; Shi, Y.; Yin, L.; Lu, B. Development of a reflective optical encoder with submicron accuracy. Opt. Commun. 2018, 411, 126–132. [Google Scholar] [CrossRef]
- Khouygani, M.H.G.; Jeng, J.Y. High-precision miniaturized low-cost reflective grating laser encoder with nanometric accuracy. Appl. Opt. 2020, 59, 5764–5771. [Google Scholar] [CrossRef]
- Hori, Y.; Gonda, S.; Bitou, Y.; Watanabe, A.; Nakamura, K. Periodic error evaluation system for linear encoders using a homodyne laser interferometer with 10 picometer uncertainty. Precis. Eng. 2018, 51, 388–392. [Google Scholar] [CrossRef]
- Yan, L.; Chen, B.; Chen, Z.; Xie, J.; Zhang, E.; Zhang, S. Phase-modulated dual-homodyne interferometer without periodic nonlinearity. Meas. Sci. Technol. 2017, 28, 115006. [Google Scholar] [CrossRef]
- Lou, Y.; Yan, L.; Chen, B. A phase modulating homodyne interferometer with tilting error compensation by use of an integrated four-photodetector. Rev. Sci. Instrum. 2019, 90, 025111. [Google Scholar] [CrossRef]
- Joo, K.N.; Clark, E.; Zhang, Y.; Ellis, J.D.; Guzmán, F. A compact high-precision periodic-error-free heterodyne interferometer. JOSA A 2020, 37, B11–B18. [Google Scholar] [CrossRef]
- Yokoyama, S.; Hori, Y.; Yokoyama, T.; Hirai, A. A heterodyne interferometer constructed in an integrated optics and its metrological evaluation of a picometre-order periodic error. Precis. Eng. 2018, 54, 206–211. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Duong, Q.A.; Higuchi, M.; Vu, T.T.; Wei, D.; Aketagawa, M. 19-picometer mechanical step displacement measurement using heterodyne interferometer with phase-locked loop and piezoelectric driving flexure-stage. Sens. Actuators A Phys. 2020, 304, 111880. [Google Scholar] [CrossRef]
- Vu, T.T.; Higuchi, M.; Aketagawa, M. Accurate displacement-measuring interferometer with wide range using an I2 frequency-stabilized laser diode based on sinusoidal frequency modulation. Meas. Sci. Technol. 2016, 27, 105201. [Google Scholar] [CrossRef]
- Duong, Q.A.; Vu, T.T.; Higuchi, M.; Wei, D.; Aketagawa, M. Iodine-frequency-stabilized laser diode and displacement-measuring interferometer based on sinusoidal phase modulation. Meas. Sci. Technol. 2018, 29, 065204. [Google Scholar] [CrossRef]
- Zhang, S.; Yan, L.; Chen, B.; Xu, Z.; Xie, J. Real-time phase delay compensation of PGC demodulation in sinusoidal phase-modulation interferometer for nanometer displacement measurement. Opt. Express 2017, 25, 472–485. [Google Scholar] [CrossRef]
- Xu, J.; Huang, L.; Yin, S.; Gao, B.; Chen, P. All-fiber self-mixing interferometer for displacement measurement based on the quadrature demodulation technique. Opt. Rev. 2018, 25, 40–45. [Google Scholar] [CrossRef]
- Jang, Y.S.; Kim, S.W. Compensation of the refractive index of air in laser interferometer for distance measurement, A review. Int. J. Precis. Eng. Manuf. 2017, 18, 1881–1890. [Google Scholar] [CrossRef]
- Demarest, F.C. High-resolution, high-speed, low data age uncertainty, heterodyne displacement measuring interferometer electronics. Meas. Sci. Technol. 1998, 9, 1024. [Google Scholar] [CrossRef]
- Topcu, S.; Chassagne, L.; Haddad, D.; Alayli, Y.; Juncar, P. Heterodyne interferometric technique for displacement control at the nanometric scale. Rev. Sci. Instrum. 2003, 74, 4876–4880. [Google Scholar] [CrossRef] [Green Version]
- Chan, S.C.; Liu, J.M. Frequency modulation on single sideband using controlled dynamics of an optically injected semiconductor laser. IEEE J. Quantum Electron. 2006, 42, 699–705. [Google Scholar] [CrossRef]
- D’Amato, F.; De Rosa, M. Tunable diode lasers and two-tone frequency modulation spectroscopy applied to atmospheric gas analysis. Opt. Lasers Eng. 2002, 37, 533–551. [Google Scholar] [CrossRef]
- Yan, P.; Zhang, Y. High precision tracking of a piezoelectric nano-manipulator with parameterized hysteresis compensation. Smart Mater. Struct. 2018, 27, 065018. [Google Scholar] [CrossRef]
- Cai, K.; Tian, Y.; Wang, F.; Zhang, D.; Liu, X.; Shirinzadeh, B. Modeling and tracking control of a novel XYθz stage. Microsyst. Technol. 2017, 23, 3575–3588. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.; Yu, J.; Wu, Z.; Shen, Z. Decoupling and control of micromotion stage based on hysteresis of piezoelectric actuation. Microsyst. Technol. 2019, 25, 3299–3309. [Google Scholar] [CrossRef]
- Teo, T.J.; Chen, I.M.; Yang, G.; Lin, W. A flexure-based electromagnetic linear actuator. Nanotechnology 2008, 19, 315501. [Google Scholar] [CrossRef]
- Youm, W.; Jung, J.; Lee, S.; Park, K. Control of voice coil motor nanoscanners for an atomic force microscopy system using a loop shaping technique. Rev. Sci. Instrum. 2008, 79, 13706–13707. [Google Scholar] [CrossRef]
- Fukada, S.; Nishimura, K. Nanometric positioning over a one-millimeter stroke using a flexure guide and electromagnetic linear motor. Int. J. Precis. Eng. Manuf. 2007, 8, 49–53. [Google Scholar]
- Kordonskii, V.; Demchuk, S. Heat transfer in electrodynamic transducers. J. Eng. Phys. 1990, 59, 1499–1504. [Google Scholar] [CrossRef]
- Vu, T.T.; Maeda, Y.; Aketagawa, M. Sinusoidal frequency modulation on laser diode for frequency stabilization and displacement measurement. Measurement 2016, 94, 927–933. [Google Scholar] [CrossRef]
- Newport. DC-250 MHz Electro-Optic Phase Modulator–Models 400X. U.S. Patent 5,189,547, 26 April 2021. [Google Scholar]
Modulation frequency ω for LD | 2π × 20 MHz |
Frequency modulation excursion Δω | 2π × 570 MHz |
Cutoff frequency of LIAs | 200 kHz |
Vπ at 536 nm | 125 V |
Applied angle frequency for ωEOM | 2π × 20 kHz |
Unbalanced length L | 0.2 m |
Working sampling frequency | 715 kHz |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vu, T.-T.; Vu, T.-T.; Tran, V.-D.; Nguyen, T.-D.; Bui, N.-T. A New Method to Verify the Measurement Speed and Accuracy of Frequency Modulated Interferometers. Appl. Sci. 2021, 11, 5787. https://doi.org/10.3390/app11135787
Vu T-T, Vu T-T, Tran V-D, Nguyen T-D, Bui N-T. A New Method to Verify the Measurement Speed and Accuracy of Frequency Modulated Interferometers. Applied Sciences. 2021; 11(13):5787. https://doi.org/10.3390/app11135787
Chicago/Turabian StyleVu, Toan-Thang, Thanh-Tung Vu, Van-Doanh Tran, Thanh-Dong Nguyen, and Ngoc-Tam Bui. 2021. "A New Method to Verify the Measurement Speed and Accuracy of Frequency Modulated Interferometers" Applied Sciences 11, no. 13: 5787. https://doi.org/10.3390/app11135787
APA StyleVu, T. -T., Vu, T. -T., Tran, V. -D., Nguyen, T. -D., & Bui, N. -T. (2021). A New Method to Verify the Measurement Speed and Accuracy of Frequency Modulated Interferometers. Applied Sciences, 11(13), 5787. https://doi.org/10.3390/app11135787