Nutritional, Medicinal, and Cosmetic Value of Bioactive Compounds in Button Mushroom (Agaricus bisporus): A Review
Abstract
:1. Introduction
2. Nutritional Value
2.1. Proteins and Amino Acids
2.2. Lipids
2.3. Carbohydrate and Fibers
2.4. Minerals
2.5. Vitamins
3. Medicinal Value
3.1. Antioxidant Properties
3.2. Anticancer Properties
3.3. Anti-Diabetic Activity
3.4. Anti-Obesity Activity
3.5. Antimicrobial Activity
3.6. Anti-Inflammatory Properties
4. Cosmetic Value
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Rosmiza, M.Z.; Davies, W.P.; Rosniza, A.C.R.; Jabil, M.J.; Mazdi, M. Prospects for Increasing Commercial Mushroom Production in Malaysia: Challenges and Opportunities. Mediterr. J. Soc. Sci. 2016, 7, 406–415. [Google Scholar] [CrossRef]
- Raut, J.K. Current Status, Challenges and Prospects of Mushroom Industry in Nepal. Int. J. Agric. Econ. 2019, 4, 154. [Google Scholar]
- Bhushan, A.; Kulshreshtha, M. The medicinal Mushroom Agaricus bisporus: Review of phytopharmacology and potential role in the treatment of various diseases. J. Nature Sci. Med. 2018, 1, 4. [Google Scholar]
- Grimm, D.; Wosten, H.A. Mushroom cultivation in the circular economy. Appl. Microbiol. Biotechnol. 2018, 102, 7795–7803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagy, M.; Socaci, S.; Tofană, M.; Biris-Dorhoi, E.S.; Țibulcă, D.; Salanță, L.; Petruț, G. Chemical Composition and Bioactive Compounds of Some Wild Edible Mushrooms. Bull. UASVM Food Sci. Technol. 2017, 74, 1. [Google Scholar] [CrossRef] [Green Version]
- Fogarasi, M.; Socaci, S.A.; Dulf, F.V.; Diaconeasa, Z.M.; Fărcaș, A.C.; Tofană, M.; Semeniuc, C.A. Bioactive Compounds and Volatile Profiles of Five Transylvanian Wild Edible Mushrooms. Molecules 2018, 23, 3272. [Google Scholar] [CrossRef] [Green Version]
- Manzi, P.; Aguzzi, A.; Pizzoferrato, L. Nutritional value of mushrooms widely consumed in Italy. Food Chem. 2001, 73, 321–325. [Google Scholar] [CrossRef]
- Shbeeb, D.A.; Farahat, M.F.; Ismail, H.M. Macronutrients analysis of fresh and canned Agaricus bisporus and Pleurotus ostreatus mushroom species sold in Alexandria markets, Egypt. Prog. Nutr. 2019, 21, 203–209. [Google Scholar]
- Qing, Z.; Cheng, J.; Wang, X.; Tang, D.; Liu, X.; Zhu, M. The effects of four edible mushrooms (Volvariella volvacea, Hypsizygus marmoreus, Pleurotus ostreatus and Agaricus bisporus) on physicochemical properties of beef paste. LWT 2021, 135, 110063. [Google Scholar] [CrossRef]
- Chikthimmah, N. Microbial Ecology of Mushroom Casing Soils and Preharvest Strategies to Enhance Safety and Quality of Fresh Mushrooms. Ph.D. Thesis, The Pennsylvania State University, State College, PA, USA, 2009; p. 98. [Google Scholar]
- Zhang, M.Z.; Li, G.J.; Dai, R.C.; Xi, Y.L.; Wei, S.L.; Zhao, R.L. The edible wide mushrooms of Agaricus section Bivelares from Western China. Mycosphere 2017, 8, 1640–1652. [Google Scholar] [CrossRef]
- Wasser, S.P.; Akavia, E. Regulatory Issues of Mushrooms as Functional Foods and Dietary Supplements: Safety and Efficacy. Mushrooms as Functional Foods; Wiley: New York, NY, USA, 2008; pp. 199–221. [Google Scholar]
- Chang, S.T. Witnessing the development of the mushroom industry in China. Acta Edulis Fungi 2005, 12, 3–19. [Google Scholar]
- Khan, A.A.; Gani, A.; Shah, A.; Masoodi, F.A.; Hussain, P.R.; Wani, I.A.; Khanday, F.A. Effect of γ-irradiation on structural, functional and antioxidant properties of β-glucan extracted from button mushroom (Agaricus bisporus). Innov. Food Sci. Emerg. Technol. 2015, 31, 123–130. [Google Scholar] [CrossRef]
- Ruthes, A.C.; Rattmann, Y.D.; Malquevicz-Paiva, S.M.; Carbonero, E.R.; Cordova, M.M.; Baggio, C.H.; Santos, A.R.; Gorin, P.A.; Iacomini, M. Agaricus bisporus fucogalactan: Structural characterization and pharmacological approaches. Carbohydr. Polym. 2013, 92, 184–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- XuJie, H.; Na, Z.; SuYing, X.; ShuGang, L.; BaoQiu, Y. Extraction of BaChu mushroom polysaccharides and preparation of a compound beverage. Carbohydr. Polym. 2008, 73, 289–294. [Google Scholar] [CrossRef]
- Chang, S.T.; Wasser, S.P. The role of culinary-medicinal mushrooms on human welfare with a pyramid model for human health. Int. J. Med. Mushrooms 2012, 14, 95–134. [Google Scholar] [CrossRef]
- Teichmann, A.; Dutta, P.C.; Staffas, A.; Jagerstad, M. Sterol and vitamin D2 concentrations in cultivated and wild grown mushrooms: Effects of UV irradiation. LWT 2007, 40, 815–822. [Google Scholar] [CrossRef]
- Barros, L.; Cruz, T.; Baptista, P.; Estevinho, L.M.; Ferreira, I.C.F.R. Wild and commercial mushrooms as source of nutrients and nutraceuticals. Food Chem. Toxicol. 2008, 46, 2743–2747. [Google Scholar] [CrossRef]
- Guillamon, E.; Garcia-Lafuente, A.; Lozano, M.; Rostagno, M.A.; Villares, A.; Martinez, J.A. Edible mushrooms: Role in the prevention of cardiovascular diseases. Fitoterapia 2010, 81, 715–723. [Google Scholar] [CrossRef] [PubMed]
- Shao, S.; Hernandez, M.; Kramer, J.K.; Rinker, D.L.; Tsao, R. Ergosterol profiles, fatty acid composition, and antioxidant activities of button mushrooms as affected by tissue part and developmental stage. J. Agric. Food Chem. 2010, 58, 11616–11625. [Google Scholar] [CrossRef]
- Muszynska, B.; Sułkowska-Ziaja, K.; Ekiert, H. Indole compounds in fruiting bodies of some edible Basidiomycota species. Food Chem. 2011, 125, 1306–1308. [Google Scholar] [CrossRef]
- Reis, F.S.; Martins, A.; Barros, L.; Ferreira, I.C. Antioxidant properties and phenolic profile of the most widely appreciated cultivated mushrooms: A comparative study between in vivo and in vitro. Food Chem. Toxicol. 2012, 50, 1201–1207. [Google Scholar] [CrossRef] [PubMed]
- Muslat, M.M.; Al-Assaffii, I.A.A.; Owaid, M.N. Agaricus bisporus product development by using local substrate with bio-amendment. Int. J. Environ. Global Climate 2014, 2, 176–188. [Google Scholar]
- Ahlavat, O.P.; Manikandan, K.; Singh, M. Proximate composition of different mushroom varieties and effect of UV light, exposure on vitamin D content in Agaricus bisporus and Volvariella volvacea. Mushroom Res. 2016, 25, 1–8. [Google Scholar]
- Correa, R.C.G.; Brugnari, T.; Bracht, A.; Peralta, R.M.; Ferreira, I.C. Pleurotus spp. (oyster mushroom) related with its chemical composition: A review on the past decade findings. Trends Food Sci. Technol. 2016, 50, 103–117. [Google Scholar] [CrossRef] [Green Version]
- El Sebaaly, Z.; Assadi, F.; Sassine, Y.N.; Shaban, N. Substrate types effect on nutritional composition of button mushroom (Agaricus bisporus). Agriculture Forestry 2019, 65, 73–80. [Google Scholar] [CrossRef]
- Bernas, E.; Jaworska, G.; Lisiewska, Z. Edible mushrooms as a source of valuable nutritive constituents. Acta Sci. Pol. Technol. Alimen. 2006, 5, 5–20. [Google Scholar]
- Pei, F.; Shi, Y.; Gao, X.; Wu, F.; Mariga, A.M.; Yang, W.; Zhao, L.; An, X.; Xin, Z.; Yang, F.; et al. Changes in non-volatile taste components of button mushroom (Agaricus bisporus) during different stages of freeze drying and freeze drying combined with microwave vacuum drying. Food Chem. 2014, 165, 547–554. [Google Scholar] [CrossRef]
- Muszynska, B.; Kala, K.; Rojowski, J.; Grzywacz, A.; Opoka, W. Composition and Biological Properties of Agaricus bisporus Fruiting Bodies-a Review. Pol. J. Food Nutr. Sci. 2017, 67, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Ozturk, M.; Duru, M.E.; Kivrak, S.; Mercan-Dogan, N.; Turkoglu, A.; Ozler, M.A. In vitro antioxidant, anticholinesterase and antimicrobial activity studies on three Agaricus species with fatty acid compositions and iron contents: A comparative study on the three most edible mushrooms. Food Chem. Toxicol. 2011, 49, 1353–1360. [Google Scholar] [CrossRef]
- Gheibi, N.; Saboury, A.A.; Haghbeen, K.; Moosavi-Movahedi, A.A. The effect of some osmolytes on the activity and stability of mushroom tyrosinase. J. Biosci. 2006, 31, 355–362. [Google Scholar] [CrossRef]
- Tsai, S.Y.; Wu, T.P.; Huang, S.J.; Mau, J.L. Antioxidant properties of ethanolic extracts from culinary-medicinal button mushroom Agaricus bisporus (J. Lange) Imbach (Agaricomycetes) harvested at different stages of maturity. Int. J. Med. Mushrooms 2008, 10, 127–137. [Google Scholar] [CrossRef]
- Kalbarczyk, J.; Radzki, W. Cultivated mushrooms as a valuable diet constituent and a source of biologically active substances. Herba Pol. 2009, 55, 224–232. [Google Scholar]
- Czapski, J. Antioxidant activity and phenolic content in some strains of mushrooms (Agaricus bisporus). Veg. Crops Res. Bull. 2004, 62, 165–173. [Google Scholar]
- Labus, K.; Turek, A.; Liesiene, J.; Bryjak, J. Efficient Agaricus bisporus tyrosinase immobilization on cellulose-based carriers. Biochem. Eng. J. 2011, 56, 232–240. [Google Scholar] [CrossRef]
- Heleno, S.A.; Diz, P.; Prieto, M.A.; Barros, L.; Rodrigues, A.; Barreiro, M.F.; Ferreira, I.C. Optimization of ultrasound-assisted extraction to obtain mycosterols from Agaricus bisporus L. by response surface methodology and comparison with conventional Soxhlet extraction. Food Chem. 2016, 197, 1054–1063. [Google Scholar] [CrossRef] [Green Version]
- Muszynska, B.; Sułkowska-Ziaja, K.; Wojcik, A. Levels of physiologically active indole derivatives in the fruiting bodies of some edible mushrooms (Basidiomycota) before and after thermal processing. Mycosciene 2013, 54, 321–326. [Google Scholar] [CrossRef]
- Gothwal, R.; Gupta, A.; Kumar, A.; Sharma, S.; Alappat, B.J. Feasibility of dairy waste water (DWW) and distillery spent wash (DSW) effluents in increasing the yield potential of Pleurotus flabellatus (PF 1832) and Pleurotus sajorcaju (PS 1610) on bagasse. Biotechnology 2012, 2, 249–257. [Google Scholar]
- Cardoso, R.V.C.; Fernandes, A.; Barreira, J.C.M.; Verde, S.C.; Antonio, A.L.; Gonzalez-Paramas, A.M.; Barros, L.; Ferreira, I.C.F.R. Effectiveness of gamma and electron beam irradiation as preserving technologies of fresh Agaricus bisporus portobello: A comparative study. Food Chem. 2019, 278, 760–766. [Google Scholar] [CrossRef] [Green Version]
- Hammond, J.B.W. Changes in composition of harvested mushrooms (Agaricus bisporus). Phytochemistry 1979, 18, 415–418. [Google Scholar] [CrossRef]
- Burton, K.S. The effects of pre- and post-harvest development on Agaricus bisporus proteases. J. Hort. Sci. 1988, 63, 103–108. [Google Scholar] [CrossRef]
- Braaksma, A.; Schaap, D.J. Protein analysis of the common mushroom Agaricus bisporus. Postharvest Biol. Technol. 1996, 7, 119–127. [Google Scholar] [CrossRef]
- Sadiq, S.; Bhatti, H.N.; Hanif, M.A. Studies on chemical composition and nutritive evaluation of wild edible mushrooms. Iran J. Chem. Chem. Eng. 2008, 27, 151–154. [Google Scholar]
- Mohiuddin, K.M.; Alam, M.; Arefin, T.; Ahmed, I. Assessment of nutritional composition and heavy metal content in some edible mushroom varieties collected from different areas of Bangladesh. Asian J. Med. Biol. Res. 2015, 1, 495–501. [Google Scholar] [CrossRef] [Green Version]
- Citores, L.; Ragucci, S.; Ferreras, J.M.; Di Maro, A.; Iglesias, R. Ageritin, a Ribotoxin from Poplar Mushroom (Agrocybe aegerita) with Defensive and Antiproliferative Activities. ACS Chem. Biol. 2019, 14, 1319–1327. [Google Scholar] [CrossRef] [PubMed]
- Fogarasi, M.; Diaconeasa, Z.M.; Pop, C.R.; Fogarasi, S.; Semeniuc, C.A.; Fărcaş, A.C.; Țibulcă, D.; Sălăgean, C.-D.; Tofană, M.; Socaci, S.A. Elemental Composition, Antioxidant and Antibacterial Properties of Some Wild Edible Mushrooms from Romania. Agronomy 2020, 10, 1972. [Google Scholar] [CrossRef]
- Baars, J.J.P.; Sonnenberg, A.S.M.; Mumm, R.; Stijger, I.; Wehrens, R. Metabolites Contributing to Taste in Agaricus Bisporus; the foundation Stichting Dienst Landbouwkundig Onderzoek; PPO/PRI Report 1.19; Research Institute Praktijkonderzoek Plant & Omgeving/Plant Research International, UR (University & Research Centre): Wageningen, The Netherlands, 2016. [Google Scholar]
- Hossain, M.S.; Alam, N.; Amin, S.M.R.; Basunia, M.A.; Rahman, A. Essential fatty acids contents of Pleurotus ostreatus, Ganoderma lucidum and Agaricus bisporus. Bangladesh J. Mushroom 2007, 1, 1–7. [Google Scholar]
- Cheung, P.C.K. The nutritional and health benefits of mushrooms. Nutr. Bull. 2010, 35, 292–299. [Google Scholar] [CrossRef]
- Tsai, S.Y.; Wu, T.P.; Huang, S.J.; Mau, J.L. Nonvolatile taste components of Agaricus bisporus harvested at different stages of maturity. Food Chem. 2007, 103, 1457–1464. [Google Scholar] [CrossRef]
- Owaid, M.N.; Barish, A.; Shariati, M.A. Cultivation of Agaricus bisporus (button mushroom) and its usages in the biosynthesis of nanoparticles. Open Agric. 2017, 2, 537–543. [Google Scholar] [CrossRef]
- Atila, F.; Owaid, M.N.; Shariati, M.A. The nutritional and medical benefits of Agaricus bisporus: A review. J. Microbiol. Biotechnol. Food Sci. 2017, 7, 281. [Google Scholar] [CrossRef]
- Vetter, J. Chitin content of cultivated mushrooms Agaricus bisporus, Pleurotus ostreatus and Lentinula edodes. Food Chem. 2007, 102, 6–9. [Google Scholar] [CrossRef]
- Cherno, N.; Osalina, S.; Nikitina, A. Chemical composition of Agaricus bisporus and Pleurotus ostreatus fruiting bodies and their morphological parts. Food Environ. Safe. 2013, 7, 291–299. [Google Scholar]
- Falandysz, J.; Borovicka, J. Macro and trace mineral constituents and radionuclides in mushrooms: Health benefits and risk. Appl. Microbiol. Biotechnol. 2013, 97, 477–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caglarırmak, N. Determination of nutrients and volatile constituents of Agaricus bisporus (brown) at different stages. J. Sci. Food Agric. 2009, 89, 634–638. [Google Scholar] [CrossRef]
- Lu, J.; Holmgren, A. Selenoproteins. J. Biol. Chem. 2009, 284, 723–727. [Google Scholar] [CrossRef] [Green Version]
- Bernas, E.; Jaworska, G. Vitamins profile as an indicator of the quality of frozen Agaricus bisporus mushrooms. J. Food Compos. Anal. 2016, 49, 1–8. [Google Scholar] [CrossRef]
- Furlani, R.P.Z.; Godoy, H.T. Vitamins B1 and B2 contents in cultivated mushrooms. Food Chem. 2008, 106, 816–819. [Google Scholar] [CrossRef]
- Simon, R.R.; Phillips, K.M.; Horst, R.L.; Munro, I.C. Vitamin D mushrooms: Comparison of the composition of button mushrooms (Agaricus bisporus) treated post-harvest with UVB light or sunlight. J. Agric. Food Chem. 2011, 59, 8724–8732. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.S.; Teichert, A.; McHugh, T.H. Vitamin D2 formation from post-harvest UV-B treatment of mushrooms (Agaricus bisporus) and retention during storage. J. Agric. Food Chem. 2008, 56, 4541–4544. [Google Scholar] [CrossRef]
- Das, B.; De, B.; Chetree, R.; Mandal, S.C. Medicinal aspect of mushrooms: A view point. In Herbal Medicine in India; Springer: Berlin/Heidelberg, Germany, 2020; Volume 5, pp. 509–532. [Google Scholar]
- Dhamodharan, G.; Mirunalini, S. A Novel Medicinal Characterization of Agaricus bisporus (white button mushroom). Pharmacol. Online 2010, 2, 456–463. [Google Scholar]
- Volman, J.J.; Mensink, R.P.; Van Griensven, L.J.L.D.; Plat, J. Effects of α-glucans from Agaricus bisporus on ex vivo cytokine production by LPS and PHA-stimulated PBMCs; a placebo-controlled study in slightly hypercholesterolemic subjects. Eur. J. Clinic. Nutr. 2010, 64, 720–726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, L.S.; Phung, S.P.; Wu, X.; Ki, L.; Chen, S. White button mushroom (Agaricus bisporus) exhibits antiproliferative and proapoptotic properties and inhibits prostate tumor growth in athymic mice. Nutr. Cancer 2008, 60, 744–756. [Google Scholar] [CrossRef]
- Novaes, M.R.C.G.; Fabiana, V.M.C.R.; Goncalves, D.R.; Menezes, M.C. The effects of dietary supplementation with Agaricales mushrooms and other medicinal fungi on breast cancer: Evidence-based medicine. Clinics 2011, 66, 2133–2139. [Google Scholar] [CrossRef] [Green Version]
- Jeong, S.C.; Koyyalamudi, S.R.; Jeong, Y.T.; Song, C.H.; Pang, G. Macrophage immunomodulating and anti-tumor activities of polysaccharides isolated from Agaricus bisporus white button mushrooms. J. Med. Food 2012, 15, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Khan, Z.U.; Aisikaer, G.; Khan, R.U.; Bu, J.; Jiang, Z.; Ni, Z.; Ying, T. Effects of composite chemical pretreatment on maintaining quality in button mushrooms (Agaricus bisporus) during post-harvest storage. Postharvest Biol. Technol. 2014, 95, 36–41. [Google Scholar] [CrossRef]
- Oms-Oliu, G.; Aguilo-Aguayo, I.; Martin-Belloso, O.; Soliva-Fortuny, R. Effects of pulsed light treatments on quality and antioxidant properties of fresh-cut mushrooms (Agaricus bisporus). Postharvest Biol. Technol. 2010, 56, 216–222. [Google Scholar] [CrossRef]
- Liu, J.; Jia, L.; Kan, J.; Jin, C.H. In vitro and in vivo antioxidant activity of ethanolic extract of white button mushroom (Agaricus bisporus). Food Chem. Toxicol. 2013, 51, 310–316. [Google Scholar] [CrossRef]
- Yu, L.; Fernig, D.G.; Smith, J.A.; Milton, J.D.; Rhodes, J.M. Reversible inhibition of proliferation of epithelial cell lines by Agaricus bisporus (edible mushroom) lectin. Cancer Res. 1993, 53, 4627–46232. [Google Scholar] [PubMed]
- Talpur, N.A.; Echard, B.W.; Fan, A.Y.; Jaffari, O.; Bagchi, D.; Preuss, H.G. Antihypertensive and metabolic effects of whole Maitake mushroom powder and its fractions in two rat strains. Mol. Cell. Biochem. 2002, 237, 129–136. [Google Scholar] [CrossRef]
- Estruch, R.; Martinez-Gonzalez, M.A.; Corella, D.; Basora-Gallisa, J.; Ruiz-Gutierrez, V.; Covas, M.I.; Fiol, M.; Gómez-Gracia, E.; López-Sabater, M.C.; Escoda, R.; et al. Predimed Study Investigators. Effects of dietary fibre intake on risk factors for cardiovascular disease in subjects at high risk. J. Epidemiol. Community Health 2009, 63, 582–588. [Google Scholar] [CrossRef] [Green Version]
- Jeong, S.C.; Jeong, Y.T.; Yang, B.K.; Islam, R.; Koyyalamudi, S.R.; Pang, G.; Cho, K.Y.; Song, C.H. White button mushroom (Agaricus bisporus) lowers blood glucose and cholesterol levels in diabetic and hypercholesterolemic rats. Nutr. Res. 2010, 30, 49–56. [Google Scholar] [CrossRef]
- Calvo, M.S.; Mehrotra, A.; Beelman, R.B.; Nadkarni, G.; Wang, L.; Cai, W.; Goh, B.C.; Kalaras, M.D.; Uribarri, J. A retrospective study in adults with metabolic syndrome: Diabetic risk factor response to daily consumption of Agaricus bisporus (white button mushrooms). Plant Foods Human Nutr. 2016, 71, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Zaid, O.A.A.; Sonbaty, S.E.; Neama, M.A. Anti-diabetic activity of Agaricus bisporus: A biochemical and pathological study. Int. J. Pharma Sci. 2017, 7, 1740–1745. [Google Scholar]
- Ramirez-Anguiano, A.C.; Santoyo, S.; Reglero, G.; Soler-Rivas, C. Radical scavenging activities, endogenous oxidative enzymes and total phenols in edible mushrooms commonly consumed in Europe. J. Sci. Food Agric. 2007, 87, 2272–2278. [Google Scholar] [CrossRef]
- Savoie, J.M.; Minvielle, N.; Largeteau, M.L. Radical-scavenging properties of extracts from the white button mushroom, Agaricus bisporus. J. Sci. Food Agric. 2008, 88, 970–975. [Google Scholar] [CrossRef]
- Jaworska, G.; Pogon, K.; Bernas, E.; Duda-Chodak, A. Nutraceuticals and Antioxidant Activity of Prepared for Consumption Commercial Mushrooms Agaricus bisporus and Pleurotus ostreatus. J. Food Qual. 2015, 38, 111–122. [Google Scholar] [CrossRef]
- Gasecka, M.; Magdziak, Z.; Siwulski, M.; Mleczek, M. Profile of phenolic and organic acids, antioxidant properties and ergosterol content in cultivated and wild-growing species of Agaricus. Eur. Food Res. Technol. 2018, 244, 259–268. [Google Scholar] [CrossRef]
- Sarikaya, S.B.O.; Gulcin, I. Radical scavenging and antioxidant capacity of serotonin. Curr. Bioact. Compd. 2013, 9, 143–152. [Google Scholar] [CrossRef]
- Quchi, Y.; Yoshikawa, E.; Futatsubashi, M.; Yagi, S.; Ueki, T.; Nakamura, K. Altered brain serotonin transporter and associated glucose metabolism in Alzheimer disease. J. Nucl. Med. 2009, 50, 1260–1266. [Google Scholar]
- Kothari, D.; Patel, S.; Kim, S.K. Anticancer and other therapeutic relevance of mushroom polysaccharides: A holistic appraisal. Biomed. Pharmacother. 2018, 105, 377–394. [Google Scholar] [CrossRef]
- Chaitanya, M.V.N.L.; Jose, A.; Ramalingam, P.; Mandal, S.C.; Kumar, P.N. Multi-targeting cytotoxic drug leads from mushrooms. Asian Pacific J. Trop. Med. 2019, 12, 531. [Google Scholar] [CrossRef]
- Zhang, J.J.; Ma, Z.; Zheng, L.; Zhai, G.Y.; Wang, L.Q.; Jia, M.; Jia, L. Purification and antioxidant activities of intracellular zinc polysaccharides from Pleurotus cornucopiae SS-03. Carbohydr. Polym. 2014, 111, 947–954. [Google Scholar] [CrossRef]
- Smiderle, F.R.; Alquini, G.; Tadra-Sfeir, M.Z.; Iacomini, M.; Wichers, H.J.; Van Griensven, L.J. Agaricus bisporus and Agaricus brasiliensis (1→6)-β-d-glucans show immunostimulatory activity on human THP-1 derived macrophages. Carbohydr. Polym. 2013, 94, 91–99. [Google Scholar] [CrossRef] [PubMed]
- McCleary, B.V.; Draga, A. Measurement of β-glucan in mushrooms and mycelial products. J. AOAC Int. 2016, 99, 364–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jagadish, L.K.; Krishnan, V.V.; Shenbhagaraman, R.; Kaviyarasan, V. Comparative study on the antioxidant, anticancer and antimicrobial property of Agaricus bisporus (J.E. Lange) Imbach. before and after boiling. Afr. J. Biotechnol. 2009, 8, 654–661. [Google Scholar]
- Heleno, S.A.; Martins, A.; Queiroz, M.J.R.; Ferreira, I.C. Bioactivity of phenolic acids: Metabolites versus parent compounds: A review. Food Chem. 2015, 173, 501–513. [Google Scholar] [CrossRef] [Green Version]
- Hassan, M.A.A.; Rouf, R.; Tiralongo, E.; May, T.W.; Tiralongo, J. Mushroom lectins: Specificity, structure and bioactivity relevant to human disease. Int. J. Mol. Sci. 2015, 16, 7802–7838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, S.; Lal, A.A.; Simon, S.; Ramteke, P.W. Efficacy of selected botanicals on biochemical constituents of white button mushroom Agaricus bisporus (Lange) Imbach. J. Pharmacogn. Phytochem. 2017, 6, 2070–2076. [Google Scholar]
- Golak-Siwulska, I.; Kałuzewicz, A.; Wdowienko, S.; Dawidowicz, L.; Sobieralski, K. Nutritional value and health-promoting properties of Agaricus bisporus (Lange) Imbach. Herba Pol. 2018, 64, 71–81. [Google Scholar] [CrossRef] [Green Version]
- Clark, L.C.; Combs, G.F.; Turnbull, B.W.; Slate, E.H.; Chalker, D.K.; Chow, J.; Krongrad, A. Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin: A randomized controlled trial. JAMA 1996, 276, 1957–1963. [Google Scholar] [CrossRef]
- Spolar, M.R.; Schaffer, E.M.; Beelman, R.B.; Milner, J.A. Selenium-enriched Agaricus bisporus mushrooms suppress 7, 12-dimethlybenz [a] anthracene bioactivation in mammary tissue. Cancer Lett. 1999, 138, 145–150. [Google Scholar] [CrossRef]
- Rzymski, P.; Mleczek, M.; Niedzielski, P.; Siwulski, M.; Gąsecka, M. Cultivation of Agaricus bisporus enriched with selenium, zinc and copper. J. Sci. Food Agric. 2017, 97, 923–928. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Yang, B.K.; Jeong, S.C.; Park, J.B.; Cho, S.P.; Das, S.; Yun, J.W.; Song, C.H. Production of a hypoglycemic extracellular polysaccharide from the submerged culture of the mushroom, Phellinus linteus. Biotechnol. Lett. 2001, 23, 513–517. [Google Scholar] [CrossRef]
- Huang, C.; Lii, C.; Lin, A.; Yeh, Y.; Yao, H.; Li, C.; Wang, T. Protection by Chrysin, Apigenin, and Luteolin against oxidative stress is mediated by The Nrf2-Dependent Up-Regulation of Heme Oxygenase 1 and Glutamate Cysteine Ligase in Rat Primary Hepatocytes. Arch. Toxicol. 2013, 87, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Leyva-Lopez, N.; Gutierrez-Grijalva, E.P.; Vazquez, O.G.; Heredia, J.B. Essential Oils of Oregano: Biological Activity beyond Their Antimicrobial Properties. Molecules 2017, 22, 1–24. [Google Scholar]
- Ekowati, N.; Yuniati, N.I.; Hernayanti, H.; Ratnaningtyas, N.I. Anti-diabetic Potentials of Button Mushroom (Agaricus bisporus) on Alloxan-Induced Diabetic Rats. Biosaintifika J. Biol. Biol. Edu. 2018, 10, 655–662. [Google Scholar] [CrossRef] [Green Version]
- Cheung, P.C.K. Dietary fiber content and composition of some cultivated edible mushroom fruiting bodies and mycelia. J. Agric. Food Chem. 1996, 44, 468–471. [Google Scholar] [CrossRef]
- Yamashita, K.; Kawai, K.; Itakura, M. Effect of fructo oligosaccharides on blood glucose and serum lipids in diabetic subjects. Nutr. Res. 1984, 4, 961–966. [Google Scholar] [CrossRef]
- Todesco, T.; Rao, A.V.; Bosello, O. Propionate lowers blood glucose and alters lipid metabolism in healthy subjects. Am. J. Clinic. Nutr. 1991, 54, 860–865. [Google Scholar] [CrossRef]
- Wong, J.M.; de Souza, R.; Kendall, C.W.; Emam, A.; Jenkins, D.J. Colonic health: Fermentation and short chain fatty acids. J. Clin. Gastroenterol. 2006, 40, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Esmaillzadeh, A.; Azatbakth, L. Food intake patterns may explain the high prevalence of cardiovascular risk factors among Iranian women. J. Nutr. Nutrit. Epidemiol. 2008, 138, 1469–1475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, X.; Ma, L.; Racette, S.B.; Spearie, C.L.A.; Ostlund, R.E. Phytosterol glycosides reduce cholesterol absorption in humans. American journal of physiology. Gastrointest. Liver Physiol. 2009, 296, 931–935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, H.; Yang, Y.J.; Yang, T.; Qian, H.Y. Statins and stem cell modulation. Ageing Res. Rev. 2013, 12, 1–7. [Google Scholar] [CrossRef]
- Zepeda–Bastida, A.; Ojeda-Ramirez, D.; Soto-Simental, S.; Rivero-Perez, N.; Ayala-Martínez, M. Comparison of antibacterial activity of the spent substrate of Pleurotus ostreatus and Lentinula edodes. J. Agric. Sci. 2016, 8, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Mattila, P.; Konko, K.; Eurola, M.; Pihlava, J.M.; Astola, J.; Vahteristo, L.; Hietaniemi, V.; Kumpulainen, J.; Valtonen, M.; Piironen, V. Contents of vitamins, mineral elements, and some phenolic compounds in cultivated mushrooms. J. Agric. Food Chem. 2001, 49, 2343–2348. [Google Scholar] [CrossRef] [PubMed]
- De Silva, D.D.; Rapior, S.; Hyde, K.D.; Bahkali, A.H. Medicinal mushrooms in prevention and control of diabetes mellitus. Fungal Divers. 2012, 56, 1–29. [Google Scholar] [CrossRef]
- Parashare, V.; Pal, S.; Bhandari, A. Antimicrobial and nutritional studies on Agaricus bisporus and Pleurotus ostreatus. Acta Boil. Indica 2013, 2, 310–315. [Google Scholar]
- Badalyan, S.M. The main groups of therapeutic compounds of medicinal mushrooms. Med. Mycol. 2001, 3, 16–23. [Google Scholar]
- Choi, M.H.; Han, H.K.; Lee, Y.J.; Jo, H.G.; Shin, H.J. In vitro anticancer activity of hydrophobic fractions of Sparassis latifolia extract using AGS, A529, and HepG2 cell lines. J. Mushroom 2014, 12, 304–310. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.; Park, J.; Park, J.; Shin, H.J.; Kwon, S.; Yeom, M.; Sur, B.; Kim, S.; Kim, M.; Lee, H.; et al. Cordyceps militaris improves neurite outgrowth in Neuro2a cells and reverses memory impairment in rats. Food Sci. Biotechnol. 2011, 20, 1599–1608. [Google Scholar] [CrossRef]
- Mortimer, P.E.; Karunarathna, S.C.; Li, Q.; Gui, H.; Yang, X.; Yang, X.; He, J.; Ye, L.; Guo, J.; Li, H. Prized edible Asian mushrooms: Ecology, conservation and sustainability. Fungal Divers. 2012, 56, 31–47. [Google Scholar] [CrossRef]
- Shang, X.; Tan, Q.; Liu, R.; Yu, K.; Li, P.; Zhao, G.P. In vitro anti–Helicobacter pylori effects of medicinal mushroom extracts, with special emphasis on the Lion’s Mane mushroom, Hericium erinaceus (higher basidiomycetes). Int. J. Med. Mushrooms 2013, 15, 165–174. [Google Scholar] [CrossRef]
- Soltanian, H.; Rezaeian, S.H.; Shakeri, A.; Janpoor, J.; Pourianfar, H.R. Antibacterial activity of crude extracts and fractions from Iranian wild-grown and cultivated Agaricus spp. Biomed. Res. 2016, 27, 56–59. [Google Scholar]
- Tambekar, D.H.; Sonar, T.P.; Khodke, M.V.; Khante, B.S. The novel antibacterials from two edible mushrooms: Agaricus bisporus and Pleurotus sajorcaju. Int. J. Pharmacol. 2006, 2, 584–587. [Google Scholar]
- Ozen, T.; Darcan, C.; Aktop, O.; Turkekul, I. Screening of antioxidant, antimicrobial activities and chemical contents of edible mushrooms wildly grown in the Black Sea region of Turkey. Comb. Chem. High Throughput Screen. 2011, 14, 72–84. [Google Scholar] [CrossRef]
- Stojkovic, D.; Reis, F.S.; Glamoclija, J.; Ciric, A.; Barros, L.; Van Griensven, L.J.; Ferreira, I.C.; Sokovic, M. Cultivated strains of Agaricus bisporus and A. brasiliensis: Chemical characterization and evaluation of antioxidant and antimicrobial properties for the final healthy product–natural preservatives in yoghurt. Food Funct. 2014, 5, 1602–1612. [Google Scholar] [CrossRef]
- Gebreyohannes, G.; Nyerere, A.; Bii, C.; Berhe Sbhatu, D. Determination of the antimicrobial activity of extracts of indigenous wild mushrooms against pathogenic organisms. Evid. Based Complement. Alternat. Med. 2019, 2019, 6212673. [Google Scholar] [CrossRef]
- Tehrani, M.H.H.; Fakhrehoseini, E.; Nejad, M.K.; Mehregan, H.; Hakemi-Vala, M. Search for proteins in the liquid extract of edible mushroom, Agaricus bisporus, and studying their antibacterial effects. Iran. J. Pharmaceut. Res. 2012, 11, 145. [Google Scholar]
- Risan, M.H.; Taemor, S.H.; Muhsin, A.H.; Hussan, S. Antibacterial activity of Agaricus bisporus and Pleurotus ostreatus extracts against some gram negative and positive bacteria. Eur. J. Biomed. 2017, 4, 9–15. [Google Scholar]
- Delgado-Povedano, M.M.; Sanchez, D.M.V.; Bautista, J.; Priego-Capote, F.; Castro, M.D.L. Tentative identification of the composition of Agaricus bisporus aqueous enzymatic extracts with antiviral activity against HCV: A study by liquid chromatography-tandem mass spectrometry in high resolution mode. J. Funct. Foods 2016, 24, 403–419. [Google Scholar] [CrossRef]
- Ruthes, A.C.; Rattmann, Y.D.; Carbonero, E.R.; Gorin, P.A.J.; Iacomini, M. Structural characterization and protective effect against murine sepsis of fucogalactans from Agaricus bisporus and Lactarius rufus. Carbohydr. Polym. 2012, 87, 1620–1627. [Google Scholar] [CrossRef] [Green Version]
- Komura, D.L.; Carbonero, E.R.; Gracher, A.H.P.; Baggio, C.H.; Freitas, C.S.; Marcon, R.; Santos, A.R.; Gorin, P.A.; Iacomini, M. Structure of Agaricus spp. fucogalactans and their anti-inflammatory and antinociceptive properties. Bioresour. Technol. 2010, 101, 6192–6199. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Choi, M.H.; Li, J.; Yang, H.; Shin, H.J. Mushroom cosmetics: The present and future. Cosmetics 2016, 3, 22. [Google Scholar] [CrossRef]
- Kamarudzaman, A.N.; Chay, T.C.; Amir, A.; Talib, S.A. Biosorption of Mn (II) ions from aqueous solution by Pleurotus spent mushroom compost in a fixed-bed column. Procedia Soc. Behav. Sci. 2015, 195, 2709–2716. [Google Scholar] [CrossRef] [Green Version]
- Taofiq, O.; Heleno, S.A.; Calhelha, R.C.; Alves, M.J.; Barros, L.; Barreiro, M.F.; Gonzalez-Paramas, A.M.; Ferreira, I.C. Development of mushroom-based cosmeceutical formulations with anti-inflammatory, anti-tyrosinase, antioxidant, and antibacterial properties. Molecules 2016, 21, 1372. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Park, J.; Kim, J.; Han, C.; Yoon, J.; Kim, N.; Seo, J.; Lee, C. Flavonoids as mushroom tyrosinase inhibitors: A fluorescence quenching study. J. Agric. Food Chem. 2006, 54, 935–941. [Google Scholar] [CrossRef]
- Chang, T.S. An updated review of tyrosinase inhibitors. Int. J. Mol. Sci. 2009, 10, 2440–2475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.S.; Shin, D.B.; Lee, S.M.; Kim, S.H.; Lee, T.S.; Jung, D.C. Melanogenesis inhibitory and antioxidant activities of Phellinus baumii methanol extract. Korean J. Mycol. 2013, 41, 104–111. [Google Scholar] [CrossRef] [Green Version]
- Taofiq, O.; Gonzalez-Paramas, A.M.; Martins, A.; Barreiro, M.F.; Ferreira, I.C.F.R. Mushrooms extracts and compounds in cosmetics, cosmeceuticals and nutricosmetics—A review. Ind. Crops Prod. 2016, 90, 38–48. [Google Scholar] [CrossRef] [Green Version]
- Papakonstantinou, E.; Roth, M.; Karakiulakis, G. Hyaluronic acid: A key molecule in skin aging. Dermatoendocrinology 2012, 4, 253–258. [Google Scholar] [CrossRef] [Green Version]
- Leem, K.H. Effects of Olibanum Extracts on Collagenase Activity and Procollagen Synthesis in Hs68 Human Fibroblasts and Tyrosinase Activity. Int. J. Biosci. Biotechnol. 2015, 7, 127–134. [Google Scholar]
- Thring, T.S.; Hili, P.; Naughton, D.P. Anti-collagenase, anti-elastase and antioxidant activities of extracts from 21 plants. BMC Complemen. Altern. Med. 2009, 9, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyake, M.; Yamamoto, S.; Sano, O.; Fujii, M.; Kohno, K.; Ushio, S.; Iwaki, K.; Fukuda, S. Inhibitory effects of 2-amino-3H-phenoxazin-3one on the melanogenesis of murine B16 melanoma cell line. Biosci. Biotechnol. Biochem. 2010, 74, 753–758. [Google Scholar] [CrossRef]
- Martins, N.; Barros, L.; Henriques, M.; Silva, S.; Ferreira, I.C.F.R. In vivo anti-candida activity of phenolic extracts and compounds: Future perspectives focusing on effective clinical interventions. BioMed Res. Int. 2015, 247382, 1–14. [Google Scholar]
- Alves, M.J.; Ferreira, I.C.; Martins, A.; Pintado, M. Antimicrobial activity of wild mushroom extracts against clinical isolates resistant to different antibiotics. J. Appl. Microbiol. 2012, 113, 466–475. [Google Scholar] [CrossRef] [PubMed]
- Racz, L.; Bumbalova, A.; Harangozo, M.; Tolgyessy, J.; Tomecek, O. Determination of cesium and Selenium in cultivated mushrooms using radionuclide X-ray fluorescence technique. J. Radioanal. Nucl. Chem. 2000, 245, 611–614. [Google Scholar] [CrossRef]
- Ogra, Y.; Ishiwata, K.; Encinar, J.R.; Łobinski, R.; Suzuki, K.T. Speciation of Selenium in selenium-enriched shiitake mushroom, Lentinula edodes. Anal. Bioanal. Chem. 2004, 379, 861–866. [Google Scholar] [CrossRef]
- Jeong, Y.T.; Yang, B.K.; Jeong, S.C.; Kim, S.M.; Song, C.H. Ganoderma applanatum: A promising mushroom for anti-tumor and immunomodulating activity. Phytother. Res. 2008, 22, 614–619. [Google Scholar] [CrossRef]
Raw Nutritional Value/100 g | |
---|---|
Energy | 94 KJ (22 kcal) |
Water | 92.43 g |
Fats | 0.34 g |
Proteins | 3.09 g |
Carbohydrates | 3.26 g |
Dietary fibers | 1 g |
Sugar | 1.65 g |
Iron | 0.50 mg |
Vitamin C | 2.1 mg |
Niacin (Vit B3) | 3.607 mg |
Riboflavin (Vit B2) | 0.402 mg |
Pantothenic acid (B5) | 1.497 mg |
Nutritional Group | Components | Amount | Unit | References |
---|---|---|---|---|
Proteins (amino acids) | Alanine | 5.8 | g 100 g−1 total protein in FW | [28,29,30] |
Cysteine | 1.1 | |||
Proline | 6.1 | |||
Tyrosine | 4.2 | |||
Methionine | 0.8 | mg g−1 DW | ||
Threonine | 1.3 | |||
Asparagine acid | 3.4 | |||
Serine | 3.1 | |||
Histidine | 14.1 | |||
Leucine | 0.8 | |||
Arginine | 2.2 | |||
Lysine | 3.5 | |||
Phenylalanine | 2.1 | |||
Glycine | 2.0 | |||
Valine | 2.3 | |||
Isoleucine | 1.0 | |||
Total amount of amino acids | 44.2 | |||
Lipids (fatty acids) | Palmitic acid | 13.35 | mg 100 g−1 DW | [31] |
Palmitoleic acid | 4.84 | |||
Caprylic acid | 1.08 | |||
Caprinic acid | 0.85 | |||
Oleic acid | 6.07 | |||
Linoleic acid | 67.29 | |||
Linolenic acid | 1.52 | |||
Laurnic acid | 0.11 | |||
Myristic acid | 0.94 | |||
Stearic acid | 3.72 | |||
Arachidic acid | 0.92 | |||
Pentadecanoic acid | 0.23 | |||
Total unsaturated fatty acids | 79.72 | |||
Total saturated fatty acids | 20.28 | |||
Total lipids | 2.7 | % DW | ||
Carbohydrates | Total sugars | 4.50 | g 100 g−1 FW | [30,32] |
Fructose | 2.62 | |||
Mannitol | 23.62 | |||
Trehalose | 1–3 | % DW | ||
Indol compounds | Indoloacetic acid | 0.19 | mg 100 g−1 DW | [8,22] |
Tryptamin | 0.06 | |||
Kynurenic acid | 6.21 | |||
Melatonin | 0.11 | |||
Serotonin | 5.21 | |||
L–Tryptophan | 0.39 | |||
Vitamins | Niacin | 42.0 | mg 100 g−1 DW | [28,33,34] |
Vitamin B1 | 0.6 | |||
Vitamin B2 | 5.1 | |||
Vitamin B3 | 43.0 | |||
Vitamin C | 17.0 | |||
γ-Tocopherol | 2–3 | |||
α-Tocopherol | 1–4 | |||
δ-Tocopherol | 1.0 | |||
Folic acid | 450 | µg 100 g−1 | ||
Vitamin B12 | 0.8 | |||
Vitamin D | 3.0 | |||
Phenolic compounds | Ferulic acid | 42.83 | mg kg−1 DW | [23,30,35,36] |
Gallic acid | 280.45 | |||
Cinnamic acid | 0.38 | |||
Myricetin | 2729.46 | |||
Caffeic acid | 392.51 | |||
Catechins | 56.74 | |||
Procatechuic acid | 83.26 | |||
p-Coumaric acid | 2.31 | |||
Total phenols | 277–687 | |||
Free phenols | 176–487 | |||
Sterols | Ergosta-7, 22-deiniol | 2.45 | mg 100 g−1 DW | [37,38] |
Ergosterol | 186.1 | |||
Ergosta-7-enol | 1.73 | |||
Ergosta-5,7-deiniol | 6.05 |
Mycochemicals | Activities | References |
---|---|---|
Alkaloids | Antimicrobial, Anti-inflammatory, Antioxidant | [53,109] |
Carbohydrate | Antimicrobial | [20,31,53,110,111] |
Phenols and Polyphenols | Antimicrobial, Anti-inflammatory, Antioxidant | [53,109,112] |
Protein and Amino acids | Antimicrobial, Anti-inflammatory | [113] |
Saponins | Anticancer, Antioxidant | [114] |
Tannins | Antimicrobial, Antioxidant | [115] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Usman, M.; Murtaza, G.; Ditta, A. Nutritional, Medicinal, and Cosmetic Value of Bioactive Compounds in Button Mushroom (Agaricus bisporus): A Review. Appl. Sci. 2021, 11, 5943. https://doi.org/10.3390/app11135943
Usman M, Murtaza G, Ditta A. Nutritional, Medicinal, and Cosmetic Value of Bioactive Compounds in Button Mushroom (Agaricus bisporus): A Review. Applied Sciences. 2021; 11(13):5943. https://doi.org/10.3390/app11135943
Chicago/Turabian StyleUsman, Muhammad, Ghulam Murtaza, and Allah Ditta. 2021. "Nutritional, Medicinal, and Cosmetic Value of Bioactive Compounds in Button Mushroom (Agaricus bisporus): A Review" Applied Sciences 11, no. 13: 5943. https://doi.org/10.3390/app11135943
APA StyleUsman, M., Murtaza, G., & Ditta, A. (2021). Nutritional, Medicinal, and Cosmetic Value of Bioactive Compounds in Button Mushroom (Agaricus bisporus): A Review. Applied Sciences, 11(13), 5943. https://doi.org/10.3390/app11135943