The Effect of High-Pressure Treatment and Skimming on Caprine Milk Proteins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Materials
2.2. Nitrogen Compounds
2.3. SDS PAGE Electrophoresis
2.4. Color Analysis
2.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Considine, T.; Patel, H.A.; Anema, S.G.; Singh, H.; Creamer, L.K. Interaction of milk proteins during heat and high hydrostatic pressure treatments—A review. Innov. Food Sci. Emerg. Technol. 2007, 8, 1–23. [Google Scholar] [CrossRef]
- Datta, N.; Deeth, H.C. High-pressure processing. In Encyclopedia of Dairy Sciences; Roginski, H., Fuquay, J.W., Fox, P.F., Eds.; Academic Press: London, UK, 2003; pp. 1327–1333. [Google Scholar]
- Lopez-Fandino., R. High pressure-induced changes in milk proteins and possible applications in dairy technology. Int. Dairy J. 2006, 16, 1119–1131. [Google Scholar] [CrossRef]
- Messens, W.; Van Camp, J.; Dewettinck, K. High pressure processing to improve dairy quality. In Dairy Processing. Improving Quality; Smit, G., Ed.; Woodhead Publishing Ltd.: Cambridge, UK; CRC Press: Boca Raton, FL, USA, 2003; pp. 310–328. [Google Scholar]
- Trujillo, A.J.; Capellas, M.; Saldo, J.; Gervilla, R.; Guamis, B. Applications of high-hydrostatic pressure on milk and dairy products: A review. Innov. Food Sci. Emerg. Technol. 2002, 3, 295–307. [Google Scholar] [CrossRef]
- Huppertz, T.; Fox, P.F.; Kelly, A.L. High pressure treatment of bovine milk: Effect on casein micelles and whey proteins. J. Dairy Res. 2004, 71, 97–106. [Google Scholar] [CrossRef]
- Huppertz, T.; Fox, P.F.; Kelly, A.L. High pressure-induced denaturation of α-lactalbumin i β-lactoglobulin in bovine milk and whey: A possible mechanism. J. Dairy Res. 2004, 71, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Goyal, A.; Sharma, V.; Upadhyay, N.; Sihag, M.; Kaushik, R. High pressure processing and its impact on milk proteins: A review. J. Dairy Technol. 2013, 2, 2319–3409. [Google Scholar]
- Anema, S.G.; Lowe, E.K.; Stockmann, R. Particle size changes and casein solubilisation in high-pressure-treated skim milk. Food Hydrocoll. 2005, 19, 257–267. [Google Scholar] [CrossRef]
- Huppertz, T.; Fox, P.F.; Kelly, A.L. Properties of casein micelles in high pressure-treated bovine milk. Food Chem. 2004, 87, 103–110. [Google Scholar] [CrossRef]
- Law, A.J.R.; Leaver, J.; Felipe, X.; Ferragut, V.; Pla, R.; Guamis, B. Comparison of the effects of high pressure and thermal treatments on the casein micelles in goat’s milk. J. Agric. Food Chem. 1998, 46, 2523–2530. [Google Scholar] [CrossRef]
- Orlien, V.; Knudsen, J.C.; Colon, M.; Skibsted, L.H. Dynamics of casein micelles in skim milk during and after high pressure treatment. Food Chem. 2006, 98, 513–521. [Google Scholar] [CrossRef]
- Lopez-Fandino, R.; De la Fuente, M.A.; Ramos, M.; Olano, A. Distribution of minerals and proteins between the soluble and colloidal phases of pasteurized milks from different species. J. Dairy Res. 1998, 65, 69–78. [Google Scholar] [CrossRef]
- Regnault, S.; Thiebaud, M.; Dumay, E.; Cheftel, J.C. Pressurisation of raw skim milk and of a dispersion of phosphocaseinate at 9 °C or 20 °C: Effects on the distribution of minerals and proteins between colloidal and soluble phases. J. Dairy Res. 2006, 73, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Patel, H.A.; Singh, H.; Anema, S.G.; Creamer, L.K. Effects of heat and high hydrostatic pressure treatments on disulfide bonding interchanges among the proteins in skim milk. J. Agric. Food Chem. 2006, 54, 3409–3420. [Google Scholar] [CrossRef] [PubMed]
- Ye, A.; Anema, S.G.; Singh, H. High-pressure-induced interactions between milk fat globule membrane proteins and skim milk proteins in whole milk. J. Dairy Sci. 2004, 87, 4013–4022. [Google Scholar] [CrossRef] [Green Version]
- Barłowska, J.; Szajkowska, M.; Litwińczuk, Z.; Król, J. Nutritional value and technological suitability of milk from various animal species used for dairy production. Compr. Rev. Food Sci. F. 2011, 10, 291–301. [Google Scholar] [CrossRef]
- Park, Y.W.; Juarez, M.; Ramos, M.; Haenlein, G.F.W. Physico-chemical characteristics of goat and sheep milk. Small Rum. Res. 2007, 68, 88–113. [Google Scholar] [CrossRef] [Green Version]
- Ruprichová, L.; Tompa, G.; Králová, M.; Borkovcová, I.; Bedáňová, I.; Vorlová, L. Profiling of caseins in cows’, goats’ and ewes’ milk and dairy products by reversed-phase high-performance liquid chromatography. J. Food Nutr. Res. 2015, 54, 218–228. [Google Scholar]
- Felipe, X.; Capellas, M.; Law, A.J.R. Comparison of the effects of high-pressure treatments and heat pasteurization on the whey proteins in goat’s milk. J. Agric. Food Chem. 1997, 45, 627–631. [Google Scholar] [CrossRef]
- Lopez-Fandino, R.; Olano, A. Cheese-making properties of ovine and caprine milks submitted to high pressures. Le Lait 1998, 78, 341–350. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2007. [Google Scholar]
- Verdi, R.J.; Barbano, D.M.; Dellavalle, M.E.; Senyk, G.F. Variability in true protein, casein, nonprotein nitrogen, and proteolysis in high and low somatic cell count milks. J. Dairy Sci. 1987, 70, 230–242. [Google Scholar] [CrossRef]
- Olalla, M.; Ruiz-López, M.D.; Navarro, M.; Artacho, R.; Cabrera, C.; Giménez, R.; Rodriguez, C.; Mingorance, R. Nitrogen fractions of Andalusian goat milk compared to similar types of commercial milk. Food Chem. 2009, 113, 835–838. [Google Scholar] [CrossRef]
- Bravo, F.I.; Molina, E.; Lopez-Fandino, R. Effect of the high-pressure-release phase on the protein composition of the soluble milk fraction. J. Dairy Sci. 2012, 95, 6293–6299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bravo, F.I.; Felipe, X.; Lopez-Fandino, R.; Molina, E. High-pressure treatment of milk in industrial and pilot-scale equipments: Effect of the treatment conditions on the protein distribution in different milk fractions. Eur. Food Res. Technol. 2013, 236, 499–506. [Google Scholar] [CrossRef]
- Nassar, K.S.; Zhang, S.; Lu, J.; Pang, X.; Ragab, E.S.; Yue, Y.; Lv, J. Combined effects of high-pressure treatment and storage temperature on the physicochemical properties of caprine milk. Int. Dairy J. 2019, 96, 66–72. [Google Scholar] [CrossRef]
- Smoczyński, M.; Staniewski, B.; Kiełczewska, K. Composition and structure of the bovine milkfat globule membrane-some nutritional and technological implications. Food Rev. Int. 2012, 28, 188–202. [Google Scholar] [CrossRef]
- Abbas, H.M.; Hassan, F.A.M.; Abd El-Gawad, M.A.M.; Enab, A.K. Physicochemical characteristics of goat’s milk. Life Sci. J. 2014, 11, 307–317. Available online: http://www.lifesciencesite.com (accessed on 28 March 2021).
- Hejtmankova, A.; Pivec, V.; Trnkova, E.; Dragounova, H. Differences in the composition of total and whey proteins in goat and ewe milk and their changes throughout the lactation period. Czech. J. Anim. Sci. 2012, 57, 323–331. [Google Scholar] [CrossRef] [Green Version]
- Gervilla, R.; Ferragut, V.; Guamis, B. High hydrostatic pressure effects on colour and milk-fat globule of ewe’s milk. J. Food Sci. 2001, 66, 880–885. [Google Scholar] [CrossRef]
- Kiełczewska, K.; Jankowska, A.; Dąbrowska, A.; Wachowska, M.; Ziajka, J. The effect of high pressure treatment on the dispersion of fat globules and the fatty acid profile of caprine milk. Int. Dairy J. 2020, 102, 104607. [Google Scholar] [CrossRef]
- Pereda, J.; Ferragut, V.; Quevedo, J.M.; Guamis, B.; Trujillo, A.J. Effects of ultra-high pressure homogenisation on microbial and physicochemical shelf life of milk. J. Dairy Sci. 2007, 90, 1081–1093. [Google Scholar] [CrossRef]
- Amador-Espejo, G.G.; Suàrez-Berencia, A.; Juan, B.; Bárcenas, M.E.; Trujillo, A.J. Effect of moderate inlet temperatures in ultra-high-pressure homogenisation treatments on physicochemical and sensory characteristics of milk. J. Dairy Sci. 2014, 97, 659–671. [Google Scholar] [CrossRef] [PubMed]
Milk | TN | NCN | NPN | |
---|---|---|---|---|
Whole milk | 0.1 MPa | 0.515 ± 0.005 a | 0.112 ± 0.001 a | 0.034 ± 0.001 a |
200 MPa | 0.096 ± 0.001 c | 0.034 ± 0.001 a | ||
300 MPa | 0.091 ± 0.003 d | 0.034 ± 0.001 a | ||
400 MPa | 0.089 ± 0.004 d,e | 0.034 ± 0.002 a | ||
500 MPa | 0.083 ± 0.003 f | 0.034 ± 0.003 a | ||
Skim milk | 0.1 MPa | 0.476 ± 0.007 b | 0.102 ± 0.002 b | 0.033 ± 0.003 b |
200 MPa | 0.426 ± 0.023 d | 0.087 ± 0.001 e | 0.029 ± 0.001 b | |
300 MPa | 0.409 ± 0.001 e | 0.084 ± 0.002 f | 0.030 ± 0.001 b | |
400 MPa | 0.439 ± 0.011 c,d | 0.081 ± 0.001 f | 0.030 ± 0.001 b | |
500 MPa | 0.447 ± 0.007 c | 0.078 ± 0.001 g | 0.030 ± 0.001 b | |
Significance (p value) | p | 0.000 | 0.000 | NS |
s | 0.000 | 0.000 | 0.000 | |
p × s | 0.000 | 0.000 | NS |
Milk | CN | WP | |
---|---|---|---|
Whole milk | 0.1 MPa | 2.571 ± 0.038 b | 0.502 ± 0.009 a |
200 MPa | 2.675 ± 0.034 a | 0.397 ± 0.008 c | |
300 MPa | 2.706 ± 0.019 a | 0.366 ± 0.015 d | |
400 MPa | 2.720 ± 0.014 a | 0.352 ± 0.017 d,e | |
500 MPa | 2.758 ± 0.019 a | 0.314 ± 0.017 f,b | |
Skim milk | 0.1 MPa | 2.388 ± 0.048 c | 0.442 ± 0.015 b |
200 MPa | 2.162 ± 0.137 e | 0.369 ± 0.008 d | |
300 MPa | 2.074 ± 0.015 f | 0.344 ± 0.012 e | |
400 MPa | 2.286 ± 0.077 d | 0.323 ± 0.008 f | |
500 MPa | 2.356 ± 0.052 c,d | 0.304 ± 0.008 g | |
Significance (p value) | P | 0.000 | 0.000 |
S | 0.000 | 0.000 | |
p × s | 0.000 | 0.005 |
Milk | α-CN | β-CN | κ-CN | β-LG | α-LA | |
---|---|---|---|---|---|---|
Whole milk | 0.1 MPa | 24.85 ± 0.59 | 34.68 ± 1.44 | 13.07 ± 0.99 | 14.40 ± 1.49 | 13.00 ± 0.27 |
200 MPa | 24.81 ± 0.65 | 34.41 ± 1.19 | 12.47 ± 1.28 | 14.81 ± 1.05 | 13.49 ± 0.50 | |
300 MPa | 24.85 ± 0.63 | 34.23 ± 2.31 | 12.72 ± 0.60 | 14.60 ± 0.56 | 13.60 ± 0.82 | |
400 MPa | 24.79 ± 0.92 | 34.38 ± 2.33 | 12.82 ± 1.23 | 14.39 ± 0.64 | 13.62 ± 0.55 | |
500 MPa | 24.74 ± 1.41 | 36.21 ± 3.27 | 12.61 ± 1.04 | 13.67 ± 1.48 | 12.77 ± 1.15 | |
Skim milk | 0.1 MPa | 24.70 ± 2.22 | 32.66 ± 1.73 | 12.86 ± 0.58 | 15.96 ± 0.46 | 13.82 ± 0.67 |
200 MPa | 23.83 ± 0.22 | 34.02 ± 0.80 | 12.81 ± 0.66 | 15.47 ± 1.27 | 13.88 ± 0.59 | |
300 MPa | 24.22 ± 0.46 | 34.88 ± 0.80 | 12.40 ± 0.96 | 15.04 ± 0.79 | 13.45 ± 0.89 | |
400 MPa | 24.68 ± 1.07 | 34.25 ± 0.76 | 12.41 ± 0.82 | 14.80 ± 0.44 | 13.86 ± 0.77 | |
500 MPa | 26.35 ± 0.84 | 35.84 ± 0.88 | 11.48 ± 0.83 | 13.41 ± 0.98 | 12.92 ± 0.85 | |
Significance (p value) | P | NS | NS | NS | NS | NS |
S | NS | NS | NS | NS | NS | |
p × s | NS | NS | NS | NS | NS |
Milk | CN (α- + β- + κ-CN) | WP (β-LG + α-LA) | CN:WP | |
---|---|---|---|---|
Whole milk | 0.1 MPa | 72.60 ± 1.67 a | 27.40 ± 1.67 a | 2.66 ± 0.22 b |
200 MPa | 71.70 ± 0.55 a | 28.30 ± 0.55 a | 2.53 ± 0.07 b | |
300 MPa | 71.80 ± 1.08 a | 28.20 ± 1.08 a | 2.55 ± 0.14 b | |
400 MPa | 71.99 ± 0.37 a | 28.01 ± 0.37 a | 2.57 ± 0.05 b | |
500 MPa | 73.56 ± 2.45 b | 26.44 ± 2.45 b | 2.80 ± 0.36 a | |
Skim milk | 0.1 MPa | 70.22 ± 1.02 a | 29.78 ± 1.02 a | 2.36 ± 0.12 b |
200 MPa | 70.65 ± 1.06 a | 29.35 ± 1.06 a | 2.41 ± 0.12 b | |
300 MPa | 71.50 ± 0.81 a | 28.50 ± 0.81 a | 2.51 ± 0.10 b | |
400 MPa | 71.34 ± 1.07 a | 28.66 ± 1.07 a | 2.49 ± 0.13 b | |
500 MPa | 73.67 ± 0.82 b | 26.33 ± 0.82 b | 2.80 ± 0.12 a | |
Significance (p value) | P | 0.018 | 0.018 | 0.017 |
S | NS | NS | NS | |
p × s | NS | NS | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiełczewska, K.; Dąbrowska, A.; Jankowska, A.; Wachowska, M.; Kowalik, J. The Effect of High-Pressure Treatment and Skimming on Caprine Milk Proteins. Appl. Sci. 2021, 11, 5982. https://doi.org/10.3390/app11135982
Kiełczewska K, Dąbrowska A, Jankowska A, Wachowska M, Kowalik J. The Effect of High-Pressure Treatment and Skimming on Caprine Milk Proteins. Applied Sciences. 2021; 11(13):5982. https://doi.org/10.3390/app11135982
Chicago/Turabian StyleKiełczewska, Katarzyna, Aneta Dąbrowska, Agnieszka Jankowska, Maria Wachowska, and Jarosław Kowalik. 2021. "The Effect of High-Pressure Treatment and Skimming on Caprine Milk Proteins" Applied Sciences 11, no. 13: 5982. https://doi.org/10.3390/app11135982
APA StyleKiełczewska, K., Dąbrowska, A., Jankowska, A., Wachowska, M., & Kowalik, J. (2021). The Effect of High-Pressure Treatment and Skimming on Caprine Milk Proteins. Applied Sciences, 11(13), 5982. https://doi.org/10.3390/app11135982