Application of Machine Learning Methods to Neutron Transmission Spectroscopic Imaging for Solid–Liquid Phase Fraction Analysis
Abstract
:1. Introduction
2. Overview and Outline of Machine Learning Analysis
2.1. Application of Machine Learning Methods to Solid–Liquid Phase Fraction Analysis
- (1)
- Measure the solidification process of liquid LBE with NTSI.
- (2a)
- Obtain the solid-phase spectrum and liquid-phase spectrum of LBE from the imaging data. For the solid-phase spectrum, after the whole sample has solidified, divide the solid zone into several parts and obtain multiple spectra with various crystalline textures from each part. For the liquid-phase spectrum, the neutron data for the entire melted liquid zone are integrated to obtain a liquid-state spectrum.
- (2b)
- Create a training dataset with different crystalline textures and solid–liquid fractions by adding the liquid-phase spectrum to each solid-phase spectrum acquired in step (2a) in fractions from 0 to 100%.
- (2c)
- Reduce the dimensionality of the training data in step (2b) using unsupervised machine learning, then build an ML model using the training dataset through supervised machine learning.
- (3)
- Reduce the dimensionality of the experimental spectra of step (1) using unsupervised ML.
- (4)
- Apply the supervised machine learning model built in step (2c) to the dimensionality-reduced experimental spectra in step (3) and obtain the solid–liquid phase fraction. Visualize the obtained phase fraction at each pixel.
2.2. Unsupervised Machine Learning
- (1)
- Calculate the variance-covariance matrix.
- (2)
- Solve the eigenvalue problem for the variance-covariance matrix to find the eigenvectors and eigenvalues.
- (3)
- Represent data in the direction of each principal component.
2.3. Supervised Machine Learning
- (1)
- Calculate the distance between the input data and the training data.
- (2)
- Chose K training data from their data points closest to the input data.
- (3)
- Obtain the average value of the indications of the training data and use it as the result of the regression problem.
3. Examination of Machine Learning Analysis Using Simulation Spectra
3.1. Preparation of Simulation Spectra for Evaluation of Machine Learning Analysis Methods
3.2. Dimensionality Reduction Using Unsupervised Machine Learning Methods
3.3. Solid–Liquid Phase Fraction Analysis by Supervised Machine Learning Method
4. Machine Learning Analysis Based on Actual Measurement Data
4.1. Overview of Neutron Transmission Spectroscopic Imaging Experiments of LBE Solidification
4.2. Creation of Training Data and Building Machine Learning Model
4.3. Principal Component Imaging by PCA of Solidified Sample
4.4. Solid–Liquid Phase Fraction Imaging of LBE Using Supervised Machine Learning Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Santisteban, J.R.; Edwards, L.; Fitzpatrick, M.E.; Steuwer, A.; Withers, P.J.; Daymond, M.R.; Johnson, M.W.; Rhodes, N.; Schooneveld, E.M. Strain imaging by Bragg edge neutron transmission. Nucl. Instrum. Methods. Phys. Res. Sect. A 2002, 481, 765–768. [Google Scholar] [CrossRef]
- Kockelmann, W.; Frei, G.; Lehmann, E.H.; Vontobel, P.; Santisteban, J.R. Energy-selective neutron transmission imaging at a pulsed source. Nucl. Instrum. Methods. Phys. Res. Sect. A 2007, 578, 421–434. [Google Scholar] [CrossRef]
- Kiyanagi, Y.; Kamiyama, T.; Takada, O.; Morita, K.; Iwase, K.; Suzuki, S.; Furusaka, M.; Hiraga, F.; Tomioka, S.; Mishima, K.; et al. Imaging and texture observation of materials by using a pulsed neutron spectroscopic transmission method. Nucl. Instrum. Methods. Phys. Res. Sect. A 2009, 600, 167–169. [Google Scholar] [CrossRef]
- Sato, H.; Takada, O.; Iwase, K.; Kamiyama, T.; Kiyanagi, Y. Imaging of a spatial distribution of preferred orientation of crystallites by pulsed neutron Bragg edge transmission. J. Phys. Conf. Ser. 2010, 251, 012070. [Google Scholar] [CrossRef]
- Sato, H.; Sato, T.; Shiota, Y.; Kamiyama, T.; Tremsin, A.S.; Ohnuma, M.; Kiyanagi, Y. Relation between Vickers Hardness and Bragg-Edge Broadening in Quenched Steel Rods Observed by Pulsed Neutron Transmission Imaging. Mater. Trans. 2015, 56, 1147–1152. [Google Scholar] [CrossRef] [Green Version]
- Sato, H.; Kamiyama, T.; Kiyanagi, Y. A Rietveld-Type Analysis Code for Pulsed Neutron Bragg-Edge Transmission Imaging and Quantitative Evaluation of Texture and Microstructure of a Welded α-Iron Plate. Mater. Trans. 2011, 52, 1294–1302. [Google Scholar] [CrossRef] [Green Version]
- Kamiyama, T.; Iwase, K.; Sato, H.; Harjo, S.; Ito, T.; Takata, S.-i.; Aizawa, K.; Kiyanagi, Y. Microstructural Information Mapping of a Plastic-deformed α-iron Plate during Tensile Tests Using Pulsed Neutron Transmission. Phys. Procedia 2017, 50–57. [Google Scholar] [CrossRef]
- Kamiyama, T.; Narita, Y.; Sato, H.; Ohnuma, M.; Kiyanagi, Y. Structural Change of Carbon Anode in a Lithium-ion Battery Product Associated with Charging Process Observed by Neutron Transmission Bragg-edge Imaging. Phys. Procedia 2017, 88, 27–33. [Google Scholar] [CrossRef]
- Butler, K.T.; Davies, D.W.; Cartwright, H.; Isayev, O.; Walsh, A. Machine learning for molecular and materials science. Nature 2018, 559, 547–555. [Google Scholar] [CrossRef]
- Fu, W.; Hopkins, W.S. Applying Machine Learning to Vibrational Spectroscopy. J. Phys. Chem. A 2018, 122, 167–171. [Google Scholar] [CrossRef]
- Suzuki, Y.; Hino, H.; Kotsugi, M.; Ono, K. Automated estimation of materials parameter from X-ray absorption and electron energy-loss spectra with similarity measures. NPJ Comput. Mater. 2019, 5, 39. [Google Scholar] [CrossRef]
- Kamuda, M.; Zhao, J.; Huff, K. A comparison of machine learning methods for automated gamma-ray spectroscopy. Nucl. Instrum. Methods. Phys. Res. Sect. A 2020, 954, 161385. [Google Scholar] [CrossRef]
- Hosseini, S.A. Neutron spectroscopy with soft computing: Development of a computational code based on Support Vector Machine (SVM) for reconstruction of neutron energy spectrum. J. Instrum. 2019, 14, P02008. [Google Scholar] [CrossRef]
- Hey, T.; Butler, K.; Jackson, S.; Thiyagalingam, J. Machine learning and big scientific data. Phil. Trans. R. Soc. A 2020, 378, 20190054. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Andrejevic, N.; Drucker, N.; Nguyen, T.; Xian, R.P.; Smidt, T.; Wang, Y.; Ernstorfer, R.; Tennant, A.; Chan, M.; et al. Machine Learning on Neutron and X-Ray Scattering. arXiv 2021, arXiv:2102.03024. Available online: https://ui.adsabs.harvard.edu/abs/2021arXiv210203024C (accessed on 25 June 2021).
- Song, G.; Porcar, L.; Boehm, M.; Cecillon, F.; Dewhurst, C.; Le Goc, Y.; Locatelli, J.; Mutti, P.; Weber, T. Deep Learning Methods on Neutron Scattering Data. EPJ Web. Conf. 2020, 225, 01004. [Google Scholar] [CrossRef]
- Takada, O.; Kamiyama, T.; Kiyanagi, Y. Study on phase transition of Pb-Bi eutectic alloy by neutron transmission spectroscopy. J. Nucl. Mater. 2010, 398, 129–131. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J. Lead-bismuth eutectic (LBE): A coolant candidate for Gen. IV advanced nuclear reactor concepts. Adv. Eng. Mater. 2014, 16, 349–356. [Google Scholar] [CrossRef]
- Agostini, P.; Baicchi, E.; Zucchini, A.; Benamati, G. The re-crystallization issue in lead-bismuth technology. J. Nucl. Mater. 2004, 335, 275–279. [Google Scholar] [CrossRef]
- Zucchini, A.; Agostini, P.; Baicchi, E. Lead-bismuth eutectic recrystallization studies for the Megapie target. J. Nucl. Mater. 2005, 336, 291–298. [Google Scholar] [CrossRef]
- Khairulin, R.A.; Lyapunov, K.M.; Mozgovoi, A.G.; Stankus, S.V. Crystallization and relaxation phenomena in the bismuth-lead eutectic. J. Alloy. Compd. 2005, 387, 183–186. [Google Scholar] [CrossRef]
- Van der Maaten, L.; Postma, E.; Herik, H. Dimensionality Reduction: A Comparative Review. J Mach. Learn. Res. JMLR 2007, 10, 13. [Google Scholar]
- Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis, Chemometr. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Saravanan, R.; Sujatha, P. A State of Art Techniques on Machine Learning Algorithms: A Perspective of Supervised Learning Approaches in Data Classification. In Proceedings of the 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 14–15 June 2018. [Google Scholar] [CrossRef]
- Shinohara, T.; Kai, T.; Oikawa, K.; Nakatani, T.; Segawa, M.; Hiroi, K.; Su, Y.; Ooi, M.; Harada, M.; Iikura, H.; Hayashida, H.; et al. The energy-resolved neutron imaging system, RADEN. Rev. Sci. Inst. 2020, 91, 043302. [Google Scholar] [CrossRef]
- Ito, D.; Saito, Y.; Sato, H.; Shinohara, T. Visualization of Solidification Process in Lead-bismuth Eutectic. Phys. Procedia 2017, 88, 58–63. [Google Scholar] [CrossRef]
- Ito, D.; Sato, H.; Saito, Y.; Parker, J.D.; Shinohara, T.; Kai, T. Visualization of phase distribution in lead–bismuth eutectic during one-dimensional solidification process. J. Vis. 2019, 22, 889–895. [Google Scholar] [CrossRef]
- Uno, S.; Uchida, T.; Sekimoto, M.; Murakami, T.; Miyama, K.; Shoji, M.; Nakano, E.; Koike, T.; Morita, K.; Satoh, H.; et al. Two-dimensional Neutron Detector with GEM and its Applications. Phys. Procedia 2012, 26, 142–152. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamiyama, T.; Hirano, K.; Sato, H.; Ono, K.; Suzuki, Y.; Ito, D.; Saito, Y. Application of Machine Learning Methods to Neutron Transmission Spectroscopic Imaging for Solid–Liquid Phase Fraction Analysis. Appl. Sci. 2021, 11, 5988. https://doi.org/10.3390/app11135988
Kamiyama T, Hirano K, Sato H, Ono K, Suzuki Y, Ito D, Saito Y. Application of Machine Learning Methods to Neutron Transmission Spectroscopic Imaging for Solid–Liquid Phase Fraction Analysis. Applied Sciences. 2021; 11(13):5988. https://doi.org/10.3390/app11135988
Chicago/Turabian StyleKamiyama, Takashi, Kazuma Hirano, Hirotaka Sato, Kanta Ono, Yuta Suzuki, Daisuke Ito, and Yasushi Saito. 2021. "Application of Machine Learning Methods to Neutron Transmission Spectroscopic Imaging for Solid–Liquid Phase Fraction Analysis" Applied Sciences 11, no. 13: 5988. https://doi.org/10.3390/app11135988
APA StyleKamiyama, T., Hirano, K., Sato, H., Ono, K., Suzuki, Y., Ito, D., & Saito, Y. (2021). Application of Machine Learning Methods to Neutron Transmission Spectroscopic Imaging for Solid–Liquid Phase Fraction Analysis. Applied Sciences, 11(13), 5988. https://doi.org/10.3390/app11135988