Highland Barley Replaces Sorghum as Raw Material to Make Shanxi Aged Vinegar
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. The Process of Vinegar Production
2.3. Determination of Physicochemical Parameters
2.3.1. β-glucan Determination
2.3.2. Total Flavonoids Analysis
2.3.3. Total Acid and Ester Analyses
2.3.4. Other Physicochemical Indexes Determination
2.4. Analyses of Volatile Flavor Compounds in Vinegars
2.5. Statistical Analysis
3. Results and Discussion
3.1. Ingredients Analyses of Raw Materials
3.2. Constituent Analyses during Vinegar Production
3.2.1. Constituents in Alcohol Fermentation Mashes
3.2.2. Changes of Alcoholicity and TA Contents during AAF
3.2.3. Analyses of the Main Components in New and Aged Vinegars
3.3. Volatile Flavor Compounds Analysis of Aged Vinegars
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Obadi, M.; Sun, J.; Xu, B. Highland barley: Chemical composition, bioactive compounds, health effects, and applications. Food Res. Int. 2021, 140, 110065. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Dong, J.; Zhang, K.; Zhu, Y.; Qu, L. Thermal processing influences the physicochemical properties, in vitro digestibility and prebiotics potential of germinated highland barley. LWT 2020, 140, 110814. [Google Scholar] [CrossRef]
- Kan, J.; Hong, Q. Research progress of bioactive ingredients and physiological functions in Qingke. Food Sci. Technol. 2020, 38, 11–20. [Google Scholar]
- Al-Ansi, W.; Mahdi, A.A.; Al-Maqtari, Q.A.; Mushtaq, B.S.; Ahmed, A.; Karrar, E.; Mohammed, J.K.; Fan, M.; Li, Y.; Qian, H.; et al. The potential improvements of naked barley pretreatments on GABA, β-glucan, and antioxidant properties. LWT 2020, 130, 109698. [Google Scholar] [CrossRef]
- Wang, C.; Pan, Z.; Nima, Z.; Tang, Y.; Cai, P.; Liang, J.; Deng, G.; Long, H.; Yu, M. Starch granule-associated proteins of hull-less barley (Hordeum vulgare L.) from the Qinghai-Tibet Plateau in China. J. Sci. Food Agric. 2011, 91, 616–624. [Google Scholar] [CrossRef]
- Li, W.; Xiao, X.; Zhang, W.; Zheng, J.; Luo, Q.; Ouyang, S.; Zhang, G. Compositional, morphological, structural and physicochemical properties of starches from seven naked barley cultivars grown in China. Food Res. Int. 2014, 58, 7–14. [Google Scholar] [CrossRef]
- Xiao, X.; Tan, C.; Sun, X.; Zhao, Y.; Zhang, J.; Zhu, Y.; Bai, J.; Dong, Y.; Zhou, X. Effects of fermentation on structural characteristics and in vitro physiological activities of barley β-glucan. Carbohydr. Polym. 2020, 231, 115685. [Google Scholar] [CrossRef]
- Lin, S.; Guo, H.; Gong, J.D.B.; Lu, M.; Lu, M.; Wang, L.; Zhang, Q.; Qin, W.; Wu, D. Phenolic profiles, β-glucan contents, and antioxidant capacities of colored Qingke (Tibetan hulless barley) cultivars. J. Cereal Sci. 2018, 81, 69–75. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, T.; Fu, X.; Brennan, M.; Abbasi, A.; Zheng, B.; Liu, R. The use of an enzymatic extraction procedure for the enhancement of highland barley (Hordeum vulgare L.) phenolic and antioxidant compounds. Int. J. Food Sci. Technol. 2016, 51. [Google Scholar] [CrossRef]
- Kinner, M.; Nitschko, S.; Sommeregger, J.; Petrasch, A.; Linsberger-Martin, G.; Grausgruber, H.; Berghofer, E.; Siebenhandl-Ehn, S. Naked barley—Optimized recipe for pure barley bread with sufficient beta-glucan according to the EFSA health claims. J. Cereal Sci. 2011, 53, 225–230. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Gao, F.; Zhu, K. Effect of fresh egg white addition on the quality characteristics and protein aggregation of oat noodles. Food Chem. 2020, 330, 127319. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yin, L.; Rasheed, H.A.; Xia, X.; Tekliye, M.; Li, Z.; Li, J.; Dong, M. Effects of chitosan on the physicochemical properties, in vitro starch digestibility, antimicrobial potentials, and antioxidant activities of purple highland barley noodles. LWT 2020, 132, 109802. [Google Scholar] [CrossRef]
- Chen, S.; Chen, L.; Chen, L.; Ren, X.; Ge, H.; Li, B.; Ma, G.; Ke, X.; Zhu, J.; Li, L.; et al. Potential probiotic characterization of Lactobacillus reuteri from traditional Chinese highland barley wine and application for room-temperature-storage drinkable yogurt. J. Dairy Sci. 2018, 101, 5780–5788. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.Y. Research on the Barley Vinegar Brewing Technology and Properties Comparison. Master’s Thesis, Southwest University, Chongqing, China, 2017. [Google Scholar]
- Mazza, S.; Murooka, Y. Vinegars through the Ages. In Vinegars of the World; Solieri, L., Giudici, P., Eds.; Springer: Milano, Italy, 2009; pp. 17–39. [Google Scholar] [CrossRef]
- Solieri, L.; Giudici, P. Vinegars of the World. In Vinegars of the World; Solieri, L., Giudici, P., Eds.; Springer: Milano, Italy, 2009; pp. 1–16. [Google Scholar] [CrossRef]
- Liu, D.; Yang, Z.; Beeftink, R.; Ooijkaas, L.; Rinzema, A.; Chen, J.; Tramper, J. Chinese vinegar and its solid-state fermentation process. Food Rev. Int. 2004, 20, 407–424. [Google Scholar] [CrossRef]
- Chen, F.; Li, L.; Qu, J.; Chen, C. Cereal vinegars made by solid-state fermentation in China. In Vinegars of the World; Solieri, L., Giudici, P., Eds.; Springer: Milano, Italy, 2009; pp. 243–259. [Google Scholar] [CrossRef]
- Nie, Z.; Zheng, Y.; Du, H.; Xie, S.; Wang, M. Dynamics and diversity of microbial community succession in traditional fermentation of Shanxi aged vinegar. Food Microbiol. 2015, 47, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Giudici, P.; Corradini, G.; Bonciani, T.; Wu, J.; Chen, F.; Lemmetti, F. The flavor and taste of cereal Chinese vinegars. Acetic Acid Bact. 2017, 6. [Google Scholar] [CrossRef]
- Liang, J.; Xie, J.; Hou, L.; Zhao, M.; Zhao, J.; Cheng, J.; Wang, S.; Sun, B. Aroma constituents in Shanxi aged vinegar before and after aging. J. Agric. Food Chem. 2016, 64. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Tabrizi, M.; Nout, M.J.; Han, B. Daqu—A traditional Chinese liquor fermentation starter. J. Inst. Brew. 2011, 117, 82–90. [Google Scholar] [CrossRef]
- Li, S.; Li, P.; Feng, F.; Luo, L. Microbial diversity and their roles in the vinegar fermentation process. Appl. Microbiol. Biotechnol. 2015, 99, 4997–5024. [Google Scholar] [CrossRef]
- Wu, J.; Ma, Y.; Zhang, F.; Chen, F. Biodiversity of yeasts, lactic acid bacteria and acetic acid bacteria in the fermentation of “Shanxi aged vinegar”, a traditional Chinese vinegar. Food Microbiol. 2012, 30, 289–297. [Google Scholar] [CrossRef]
- Xia, T.; Yao, J.; Zhang, J.; Duan, W.; Zhang, B.; Xie, X.; Xia, M.; Song, J.; Zheng, Y.; Wang, M. Evaluation of nutritional compositions, bioactive compounds, and antioxidant activities of Shanxi aged vinegars during the aging process. J. Food Sci. 2018, 83, 2638–2644. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Yin, H.; Zhou, J. Continuous determination of the content of total acid and ester in vinegar. Food Ferment. Ind. 2001, 12, 41–43. [Google Scholar]
- Zhang, T.; Wang, Q.; Li, J.; Zhao, S.; Qie, M.; Wu, X.; Bai, Y.; Zhao, Y. Study on the origin traceability of Tibet highland barley (Hordeum vulgare L.) based on its nutrients and mineral elements. Food Chem. 2021, 346, 128928. [Google Scholar] [CrossRef]
- Madu, J.O.; Agboola, B.O. Bioethanol production from rice husk using different pretreatments and fermentation conditions. 3 Biotech 2018, 8, 15. [Google Scholar] [CrossRef]
- Wang, Y.; Qiu, S.; Wang, Y.; Jang, C. Process optimization of acetic acid fermentation of hawthorn vinegar. Agric. Sci. Technol. 2016, 17, 420–423. [Google Scholar]
- Duan, W.; Xia, T.; Zhang, B.; Li, S.; Zhang, C.; Zhao, C.; Song, J.; Wang, M. Changes of physicochemical, bioactive compounds and antioxidant capacity during the brewing process of Zhenjiang aromatic vinegar. Molecules 2019, 24, 3935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Q.; Ding, J.; Cai, J.; Sun, Z.; Zhao, J. Simultaneous measurement of total acid content and soluble salt-free solids content in Chinese vinegar using Near-infrared Spectroscopy. J. Food Sci. 2012, 77, C222–C227. [Google Scholar] [CrossRef]
- Chen, J.; Chen, Q.; Guo, Q.; Ruan, S.; Ruan, H.; He, G.; Gu, Q. Simultaneous determination of acetoin and tetramethylpyrazine in traditional vinegars by HPLC method. Food Chem. 2010, 122, 1247–1252. [Google Scholar] [CrossRef]
- Zhu, H.; Zhu, J.; Wang, L.; Li, Z. Development of a SPME-GC-MS method for the determination of volatile compounds in Shanxi aged vinegar and its analytical characterization by aroma wheel. J. Food Sci. Technol. 2016, 53, 171–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Kalil, S.J.; Maugeri, F.; Rodrigues, M.I. Response surface analysis and simulation as a tool for bioprocess design and optimization. Process. Biochem. 2000, 35, 539–550. [Google Scholar] [CrossRef]
- Nie, Z.; Zheng, Y.; Xie, S.; Zhang, X.; Song, J.; Xia, M.; Wang, M. Unraveling the correlation between microbiota succession and metabolite changes in traditional Shanxi aged vinegar. Sci. Rep. 2017, 7, 9240. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Gullo, M.; Chen, F.; Giudici, P. Diversity of Acetobacter pasteurianus strains isolated from solid-state fermentation of cereal vinegars. Curr. Microbiol. 2010, 60, 280–286. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Huang, L.; Huang, Q.; Ma, C.; Cao, Y. Main ingredient change trend during the aging process of Xiangxi original musk vinegar. Grain Sci. Technol. Econ. 2013, 38, 58–60. [Google Scholar]
- Chen, T.; Gui, Q.; Shi, J.; Zhang, X.; Chen, F. Analysis of variation of main components during aging process of Shanxi aged vinegar. Acetic Acid Bact. 2013, 2, 6. [Google Scholar] [CrossRef]
- Ishihara, S.; Inaoka, T.; Nakamura, T.; Kimura, K.; Sekiyama, Y.; Tomita, S. Nuclear magnetic resonance- and gas chromatography/mass spectrometry-based metabolomic characterization of water-soluble and volatile compound profiles in cabbage vinegar. J. Biosci. Bioeng. 2018, 126, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Gerbi, V.; Zeppa, G.; Antonelli, A.; Carnacini, A. Sensory characterisation of wine vinegars. Food Qual. Prefer. 1997, 8, 27–34. [Google Scholar] [CrossRef]
- Tagliazucchi, D.; Verzelloni, E.; Conte, A. Contribution of melanoidins to the antioxidant activity of traditional balsamic vinegar during aging. J. Food Biochem. 2010, 34, 1061–1078. [Google Scholar] [CrossRef]
- Chou, C.; Liu, C.; Yang, D.; Wu, Y.; Chen, Y. Amino acid, mineral, and polyphenolic profiles of black vinegar, and its lipid lowering and antioxidant effects in vivo. Food Chem. 2015, 168, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Liu, M.; Xu, Y.; Feng, Y.; Che, J.; Wang, G.; Zheng, J. Combination of quercetin and hyperoside has anticancer effects on renal cancer cells through inhibition of oncogenic microRNA-27a. Oncol. Rep. 2013, 31. [Google Scholar] [CrossRef] [Green Version]
- Ruan, Z.; Yang, Y.; Zhou, Y.; Wen, Y.; Ding, S.; Liu, G.; Wu, X.; Liao, P.; Deng, Z.; Assaad, H.; et al. Metabolomic analysis of amino acid and energy metabolism in rats supplemented with chlorogenic acid. Amino Acids 2014, 46, 2219–2229. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.R.; Park, C.G.; Jung, J.Y. Acacetin (5,7-dihydroxy-4′-methoxyflavone) exhibits in vitro and in vivo anticancer activity through the suppression of NF-κB/Akt signaling in prostate cancer cells. Int. J. Mol. Med. 2014, 33, 317–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, D.; Liu, F.; Kang, S.; Sun, J.; Wang, H.; Xu, N. Changes of flavor substances and functional active components in fumigation process of traditional Shanxi aged vinegar. China Brew. 2021, 40, 163–169. [Google Scholar]
- Nie, J.; Li, Y.; Qin, X.; Li, Z. Recent progress in chemical composition of grain-derived traditional vinegar. Food Sci. 2018, 39, 322–328. [Google Scholar]
- Mäkelä, N.; Rosa-Sibakov, N.; Wang, Y.; Mattila, O.; Nordlund, E.; Sontag-Strohm, T. Role of β-glucan content, molecular weight and phytate in the bile acid binding of oat β-glucan. Food Chem. 2021, 358, 129917. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Zhao, C.; Wu, Y.; Liu, J.; Cheng, C. Composition of characteristic flavor components and analysis of flavor wheel for Shanxi aged vinegar. J. Food Sci. Technol. 2019, 37, 24–34. [Google Scholar]
- Frauendorfer, F.; Schieberle, P. Changes in key aroma compounds of Criollo cocoa beans during roasting. J. Agric. Food Chem. 2008, 56, 10244–10251. [Google Scholar] [CrossRef]
- Kotseridis, Y.; Baumes, R. Identification of impact odorants in Bordeaux red grape juice, in the commercial yeast used for its fermentation, and in the produced wine. J. Agric. Food Chem. 2000, 48, 400–406. [Google Scholar] [CrossRef]
- Jordán, M.J.; Shaw, P.E.; Goodner, K.L. Volatile components in aqueous essence and fresh fruit of Cucumis melo cv. Athena (muskmelon) by GC-MS and GC-O. J. Agric. Food Chem. 2001, 49, 5929–5933. [Google Scholar] [CrossRef]
- Al-Dalali, S.; Zheng, F.; Sun, B.; Zhou, C.; Li, M.; Chen, F. Effects of different brewing processes on the volatile flavor profiles of Chinese vinegar determined by HS-SPME-AEDA with GC-MS and GC-O. LWT 2020, 133, 109969. [Google Scholar] [CrossRef]
- Yu, Y.; Lu, Z.; Yu, N.; Xu, W.; Li, G.; Shi, J.; Xu, Z. HS-SPME/GC-MS and chemometrics for volatile composition of Chinese traditional aromatic vinegar in the Zhenjiang region. J. Inst. Brew. 2012, 118, 133–141. [Google Scholar] [CrossRef]
- Kunjapur, A.M.; Prather, K.L. Microbial engineering for aldehyde synthesis. Appl. Environ. Microbiol. 2015, 81, 1892–1901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, Z.; Dai, S.; Niu, Y.; Yu, H.; Zhu, J.; Tian, H.; Gu, Y. Discrimination of Chinese vinegars based on headspace solid-phase microextraction-gas chromatography mass spectrometry of volatile compounds and multivariate analysis. J. Food Sci. 2011, 76, C1125–C1135. [Google Scholar] [CrossRef]
- Chen, H.; Chen, T.; Giudici, P.; Chen, F. Vinegar functions on health: Constituents, sources, and formation mechanisms. Compr. Rev. Food Sci. Food Saf. 2016, 15, 1124–1138. [Google Scholar] [CrossRef] [PubMed]
Categories | Ingredient Proportion (Kg) | |||||
---|---|---|---|---|---|---|
Raw Material | Daqu | Kuaiqu | Jiumu | Material: H2O | Bran | |
HBV | 100 (HB) | 45 | 15 | 0.20 | 1:4.0 | 50/100 HB |
SV | 100 (Sorghum) | 45 | 15 | 0.20 | 1:4.0 | 50/100 Sorghum |
Categories | Alcohol (%) | TA (g·100 mL−1) | Residual Starch (g·100 mL−1) | Residual RS (g·100 mL−1) | β-glucan (mg·L−1) |
---|---|---|---|---|---|
HB AF mash | 8.35 ± 0.07 | 2.36 ± 0.04 | 2.49 ± 0.01 | 0.44 ± 0.01 | 6.74 ± 0.08 |
Sorghum AF mash | 7.67 ± 0.18 | 2.32 ± 0.07 | 2.02 ± 0.02 | 0.30 ± 0.02 | - |
Items | New Vinegars | Aged Vinegars | ||
---|---|---|---|---|
HBV | SV | HBV | SV | |
TA (g·100 mL−1) | 4.94 ± 0.04 | 4.93 ± 0.02 | 6.65 ± 0.06 | 6.55 ± 0.05 |
Non-volatile acid (g·100 mL−1) | 1.62 ± 0.01 | 1.66 ± 0.02 | 2.75 ± 0.04 | 1.94 ± 0.02 |
Amino acid nitrogen (g·100 mL−1) | 0.20 ± 0.01 | 0.21 ± 0.02 | 0.31 ± 0.04 | 0.31 ± 0.02 |
RS (g·100 mL−1) | 1.24 ± 0.01 | 1.24 ± 0.01 | 0.99 ± 0.02 | 0.88 ± 0.04 |
Salt (g·100 mL−1) | 0.89 ± 0.02 | 0.82 ± 0.03 | 1.03 ± 0.03 | 1.53 ± 0.03 |
Soluble salt-free solid (g·100 mL−1) | 9.46 ± 0.05 | 8.16 ± 0.02 | 14.10 ± 0.11 | 13.64 ± 0.04 |
TE (g·100 mL−1) | 3.13 ± 0.06 | 3.50 ± 0.03 | 2.70 ± 0.02 | 3.35 ± 0.05 |
TF (mg·100 mL−1) | 73.91 ± 0.19 | 88.71 ± 0.03 | 109.00 ± 1.41 | 113.00 ± 1.39 |
Ligustrazine (mg·100 mL−1) | 3.05 ± 0.05 | 3.35 ± 0.04 | 5.49 ± 0.08 | 9.13 ± 0.02 |
β-glucan | - | - | - | - |
Volume (L) | 100.00 ± 0.71 | 100.00 ± 0.98 | 68.00 ± 0.69 | 69.00 ± 0.92 |
Species | Concentrations (mg·L−1) | |
---|---|---|
HBV | SV | |
Acids | 2114.14 ± 30.50/(11) | 1644.47 ± 36.39/(12) |
Alcohols | 2432.88 ± 59.03/(14) | 4415.19 ± 94.08/(12) |
Esters | 2753.62 ± 93.96/(22) | 1553.37 ± 48.56/(20) |
Aldehydes | 1180.72 ± 25.82/(14) | 1384.15 ± 29.09/(13) |
Furans | 65.52 ± 0.76/(1) | 97.49 ± 2.75/(2) |
Ketones | 301.95 ± 7.74/(9) | 407.67 ± 9.03/(7) |
Pyrazines | 806.85 ± 6.18/(6) | 1066.57 ± 11.79/(4) |
Others | 410.30 ± 3.04/(7) | 459.35 ± 10.71/(8) |
VFCs | Concentrations (mg·L−1) | ||
---|---|---|---|
HBV | SV | ||
Acids | 3-Methyl- butanoic acid | 563.83 ± 10.40 | 458.56 ± 13.12 |
Hexanoic acid | 808.51 ± 6.02 | 431.15 ± 4.84 | |
Alcohols | [R-(R*,R*)]-2,3-Butanediol | 248.85 ± 3.43 | 1043.19 ± 30.54 |
2-Furanmethanol Phenylethyl alcohol | 411.11 ± 7.15 1578.52 ± 34.31 | 747.36 ± 10.15 2478.52 ± 55.52 | |
Esters | 2-Furanmethanol acetate | 231.23 ± 14.30 | 105.97 ± 4.22 |
Acetic acid 2-phenylethyl ester | 1193.05 ± 32.56 | 495.92 ± 7.01 | |
Aldehydes | 3-Furaldehyde Benzaldehyde | 95.88 ± 2.74 414.71 ± 3.33 | 367.65 ± 4.70 303.41 ± 2.41 |
Benzeneacetaldehyde (E)-2-Octenal | 114.65 ± 3.29 208.86 ± 5.56 | 203.71 ± 2.62 - | |
2-Undecenal | 84.14 ± 0.81 | 5.06 ± 0.75 | |
Ketones | Dihydro-5-pentyl-2(3H)-furanone | 174.52 ± 3.20 | 306.76 ± 4.78 |
Pyrazines | Tetramethylpyrazine, | 722.33 ± 5.17 | 1038.16 ± 11.43 |
Others | 2-Pentadecyl-1,3-dioxepane Creosol | 30.31 ± 0.49 146.03 ± 4.26 | 221.92 ± 4.89 50.82 ± 1.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Zhou, J.; Lang, F.; Zheng, Y.; Chen, F. Highland Barley Replaces Sorghum as Raw Material to Make Shanxi Aged Vinegar. Appl. Sci. 2021, 11, 6039. https://doi.org/10.3390/app11136039
Zhang H, Zhou J, Lang F, Zheng Y, Chen F. Highland Barley Replaces Sorghum as Raw Material to Make Shanxi Aged Vinegar. Applied Sciences. 2021; 11(13):6039. https://doi.org/10.3390/app11136039
Chicago/Turabian StyleZhang, Huan, Jingli Zhou, Fanfan Lang, Yu Zheng, and Fusheng Chen. 2021. "Highland Barley Replaces Sorghum as Raw Material to Make Shanxi Aged Vinegar" Applied Sciences 11, no. 13: 6039. https://doi.org/10.3390/app11136039
APA StyleZhang, H., Zhou, J., Lang, F., Zheng, Y., & Chen, F. (2021). Highland Barley Replaces Sorghum as Raw Material to Make Shanxi Aged Vinegar. Applied Sciences, 11(13), 6039. https://doi.org/10.3390/app11136039