Multi-Descriptor Random Sampling for Patch-Based Face Recognition
Abstract
:1. Introduction
2. Overview of the Proposed Method
2.1. Face Patching
2.2. Multi-Scale Local Binary Patterns
2.3. Histograms of Oriented Gradients
2.4. Kernel Principal Component Analysis
2.5. Random Patch-Based SVM
3. Experiments and Analysis
3.1. AR Face Dataset
3.1.1. Experiments Part 1: Single Descriptor
3.1.2. Experiments Part 2: Multi-Descriptor
3.1.3. Experiments Part 3: Classifier Size
3.2. Extended Yale B Dataset
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hassaballah, M.; Aly, S. Face recognition: Challenges, achievements and future directions. IET Comput. Vis. 2015, 9, 614–626. [Google Scholar] [CrossRef]
- Turk, M.A.; Pentland, A.P. Face recognition using eigenfaces. In Proceedings of the 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Maui, HI, USA, 3–6 June 1991; pp. 586–591. [Google Scholar]
- Hyvärinen, A.; Oja, E. Independent component analysis: Algorithms and applications. Neural Netw. 2000, 13, 411–430. [Google Scholar] [CrossRef] [Green Version]
- Belhumeur, P.N.; Hespanha, J.P.; Kriegman, D.J. Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 1997, 19, 711–720. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Plataniotis, K.N.; Venetsanopoulos, A.N. Face recognition using kernel direct discriminant analysis algorithms. IEEE Trans. Neural Netw. 2003, 14, 117–126. [Google Scholar] [PubMed] [Green Version]
- Kim, K.I.; Jung, K.; Kim, H.J. Face recognition using kernel principal component analysis. IEEE Signal Process. Lett. 2002, 9, 40–42. [Google Scholar]
- Hadid, A.; Ylioinas, J.; López, M.B. Face and texture analysis using local descriptors: A comparative analysis. In Proceedings of the 2014 4th International Conference on Image Processing Theory, Tools and Applications (IPTA), Paris, France, 14–17 October 2014; pp. 1–4. [Google Scholar]
- Gottumukkal, R.; Asari, V.K. An improved face recognition technique based on modular {PCA} approach. Pattern Recognit. Lett. 2004, 25, 429–436. [Google Scholar] [CrossRef]
- Ekenel, H.K.; Stiefelhagen, R. Local appearance based face recognition using discrete cosine transform. In Proceedings of the 13th European Signal Processing Conference (EUSIPCO 2005), Antalya, Turkey, 4–8 September 2005. [Google Scholar]
- Tan, K.; Chen, S. Adaptively weighted sub-pattern PCA for face recognition. Neurocomputing 2005, 64, 505–511. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Liu, J.; Chen, S. Semi-random subspace method for face recognition. Image Vis. Comput. 2009, 27, 1358–1370. [Google Scholar] [CrossRef] [Green Version]
- Su, Y.; Shan, S.; Chen, X.; Gao, W. Hierarchical ensemble of global and local classifiers for face recognition. IEEE Trans. Image Process. 2009, 18, 1885–1896. [Google Scholar] [CrossRef] [PubMed]
- Sapkota, A.; Boult, T. Context-patch for difficult face recognition. In Proceedings of the 2012 5th IAPR International Conference on Biometrics (ICB), New Delhi, India, 29 March–1 April 2012; pp. 59–66. [Google Scholar]
- McLaughlin, N.; Ming, J.; Crookes, D. Largest Matching Areas for Illumination and Occlusion Robust Face Recognition. IEEE Trans. Cybern. 2017, 47, 796–808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schroff, F.; Kalenichenko, D.; Philbin, J. Facenet: A unified embedding for face recognition and clustering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 815–823. [Google Scholar]
- Parkhi, O.M.; Vedaldi, A.; Zisserman, A. Deep Face Recognition. In Proceedings of the BMVC 2015, Swansea, UK, 7–10 September 2015; Volume 1, p. 6. [Google Scholar]
- Sun, Y.; Liang, D.; Wang, X.; Tang, X. Deepid3: Face recognition with very deep neural networks. arXiv 2015, arXiv:1502.00873. [Google Scholar]
- Cheheb, I.; Al-Maadeed, N.; Al-Madeed, S.; Bouridane, A.; Jiang, R. Random sampling for patch-based face recognition. In Proceedings of the 2017 5th International Workshop on Biometrics and Forensics (IWBF), Coventry, UK, 4–5 April 2017; pp. 1–5. [Google Scholar]
- Ahonen, T.; Hadid, A.; Pietikäinen, M. Face recognition with local binary patterns. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2004; pp. 469–481. [Google Scholar]
- Ojala, T.; Pietikäinen, M.; Mäenpää, T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–987. [Google Scholar] [CrossRef]
- Ahonen, T.; Hadid, A.; Pietikainen, M. Face Description with Local Binary Patterns: Application to Face Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 2037–2041. [Google Scholar] [CrossRef] [PubMed]
- Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the International Conference on Computer Vision & Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; Volume 1, pp. 886–893. [Google Scholar]
- Wang, X.; Han, T.X.; Yan, S. An HOG-LBP human detector with partial occlusion handling. In Proceedings of the 2009 IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 29 September–2 October 2009; pp. 32–39. [Google Scholar]
- Déniz, O.; Bueno, G.; Salido, J.; De la Torre, F. Face recognition using histograms of oriented gradients. Pattern Recognit. Lett. 2011, 32, 1598–1603. [Google Scholar] [CrossRef]
- Liu, C. Gabor-based kernel PCA with fractional power polynomial models for face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26, 572–581. [Google Scholar] [PubMed]
- Meshgini, S.; Aghagolzadeh, A.; Seyedarabi, H. Face recognition using Gabor filter bank, kernel principle component analysis and support vector machine. Int. J. Comput. Theory Eng. 2012, 4, 767. [Google Scholar] [CrossRef]
- Martínez, A.M.; Kak, A.C. Pca versus lda. IEEE Trans. Pattern Anal. Mach. Intell. 2001, 23, 228–233. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, Y. The facial expression recognition based on KPCA. In Proceedings of the 2010 International Conference on Intelligent Control and Information Processing, Dalian, China, 13–15 August 2010; pp. 365–368. [Google Scholar]
- Xie, X.; Zheng, W.S.; Lai, J.-H.; Suen, C.Y. Restoration of a Frontal Illuminated Face Image Based on KPCA. In Proceedings of the 2010 20th International Conference on Pattern Recognition (ICPR), Istanbul, Turkey, 23–26 August 2010; pp. 2150–2153. [Google Scholar]
- Ebied, H.M. Feature extraction using PCA and Kernel-PCA for face recognition. In Proceedings of the 2012 8th International Conference on Informatics and Systems (INFOS), Giza, Egypt, 14–16 May 2012; pp. MM-72–MM-77. [Google Scholar]
- Guo, G.; Li, S.Z.; Chan, K. Face recognition by support vector machines. In Proceedings of the Fourth IEEE International Conference on Automatic Face and Gesture Recognition, Grenoble, France, 28–30 March 2000; pp. 196–201. [Google Scholar]
- Zhang, Y. Support vector machine classification algorithm and its application. In International Conference on Information Computing and Applications; Springer: Berlin/Heidelberg, Germany, 2012; pp. 179–186. [Google Scholar]
- Wei, X.; Li, C.T.; Hu, Y. Face recognition with occlusion using dynamic image-to-class warping (DICW). In Proceedings of the 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), Shanghai, China, 22–26 April 2013; pp. 1–6. [Google Scholar]
- Lee, K.; Ho, J.; Kriegman, D. Acquiring Linear Subspaces for Face Recognition under Variable Lighting. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 684–698. [Google Scholar] [PubMed]
- Wright, J.; Yang, A.Y.; Ganesh, A.; Sastry, S.S.; Ma, Y. Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31, 210–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, X.; Li, C.T.; Hu, Y. Robust face recognition under varying illumination and occlusion considering structured sparsity. In Proceedings of the 2012 International Conference on Digital Image Computing Techniques and Applications (DICTA), Fremantle, WA, Australia, 3–5 December 2012; pp. 1–7. [Google Scholar]
Test Conditions | Sunglasses % | Scarf % |
---|---|---|
Previous work [18] | 73∼89 | 92∼98 |
Our approach | 91 | 98.5 |
LMA/LMA-UDM [14] | 96∼98 | 97∼98 |
DICW [33] | 99.5 | 98 |
Occlusion % | 10 | 20 | 30 | 40 | 50 | |
---|---|---|---|---|---|---|
subset3 | SSR-P [36] | 100 | 100 | 100 | 97.8 | 85.4 |
Our Method | 94.26 | 94.53 | 94.57 | 94.89 | 90.78 | |
subset4 | SSR-W [36] | 99.8 | 99.4 | 99.4 | 99.6 | 98.1 |
Our Method | 87.04 | 85.52 | 90.90 | 89.96 | 90.29 | |
subset5 | SSR-W [36] | 98.0 | 97.3 | 95.8 | 95.4 | 88.6 |
Our Method | 89.38 | 86.53 | 90.54 | 90.02 | 90.58 |
Occlusion % | 60 | 70 | 80 |
---|---|---|---|
subset3 | 90.07 | 89.17 | 90.08 |
subset4 | 89.03 | 93.85 | 89.85 |
subset5 | 90.58 | 86.66 | 86.44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheheb, I.; Al-Maadeed, N.; Bouridane, A.; Beghdadi, A.; Jiang, R. Multi-Descriptor Random Sampling for Patch-Based Face Recognition. Appl. Sci. 2021, 11, 6303. https://doi.org/10.3390/app11146303
Cheheb I, Al-Maadeed N, Bouridane A, Beghdadi A, Jiang R. Multi-Descriptor Random Sampling for Patch-Based Face Recognition. Applied Sciences. 2021; 11(14):6303. https://doi.org/10.3390/app11146303
Chicago/Turabian StyleCheheb, Ismahane, Noor Al-Maadeed, Ahmed Bouridane, Azeddine Beghdadi, and Richard Jiang. 2021. "Multi-Descriptor Random Sampling for Patch-Based Face Recognition" Applied Sciences 11, no. 14: 6303. https://doi.org/10.3390/app11146303
APA StyleCheheb, I., Al-Maadeed, N., Bouridane, A., Beghdadi, A., & Jiang, R. (2021). Multi-Descriptor Random Sampling for Patch-Based Face Recognition. Applied Sciences, 11(14), 6303. https://doi.org/10.3390/app11146303