Selection of a PCM for a Vehicle’s Rooftop by Multicriteria Decision Methods and Simulation
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials Determmination
2.2. Analytic Hierarchy Process (AHP)
- Phase change in an environment temperature;
- Good density for a low volume change when changing phases;
- Low fusion heat for a quick and efficient phase change;
- High latent heat for efficient thermal storage;
- Good thermal conductivity to transmit the thermal energy.
- Phase-change Temp = T1;
- Density = T2;
- Heat of fusion= T3;
- Specific heat capacity = T4;
- Thermal conductivity = T5;
- FOM1 ∗ = T6;
- FOM2 = T7.
2.3. Method VIKOR
- T1 Higher = Better;
- T2 Lower = Better;
- T3 Higher = Better;
- T4 Higher = Better;
- T5 Higher = Better;
- T6 Higher = Better;
- T7 Lower = Better.
2.4. TOPSIS Method
2.5. COPRAS-G Method
- T1 = Beneficial;
- T2 = Non-Beneficial;
- T3 = Beneficial;
- T4 = Beneficial;
- T5 = Beneficial;
- T6 = Beneficial;
- T7 = Non-Beneficial.
2.6. Spearman’s Correlation Coefficient
2.7. Simulation
2.8. Boundary Conditions
3. Results and Discussion
3.1. AHP Results
3.2. VIKOR Results
3.3. TOPSIS Results
3.4. COPRAS Method
3.5. Spearman’s Correlation Results
3.6. Simulation Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Farrington, R.; Rugh, J. Impact of Vehicle Air-Conditioning on Fuel Economy, Tailpipe Emissions, and Electric Vehicle Range: Preprint. 2000. Available online: https://www.osti.gov/biblio/764573 (accessed on 15 January 2021).
- Antonijevic, D.; Heckt, R. Heat pump supplemental heating system for motor vehicles. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2004, 218, 1111–1115. [Google Scholar] [CrossRef]
- Kang, B.H.; Lee, H.J. A Review of Recent Research on Automotive HVAC Systems for EVs. Int. J. Air-Cond. Refrig. 2017, 25, 1730003. [Google Scholar] [CrossRef]
- Simion, M.; Socaciu, L.; Unguresan, P. Factors which Influence the Thermal Comfort Inside of Vehicles. Energy Procedia 2016, 85, 472–480. [Google Scholar] [CrossRef] [Green Version]
- Prajapati, D.G.; Kandasubramanian, B. Biodegradable Polymeric Solid Framework-Based Organic Phase-Change Materials for Thermal Energy Storage. Ind. Eng. Chem. Res. 2019, 58, 10652–10677. [Google Scholar] [CrossRef]
- Jaguemont, J.; Omar, N.; Van den Bossche, P.; Mierlo, J. Phase-change materials (PCM) for automotive applications: A review. Appl. Therm. Eng. 2018, 132, 308–320. [Google Scholar] [CrossRef]
- Nazir, H.; Batool, M.; Bolivar Osorio, F.J.; Isaza-Ruiz, M.; Xu, X.; Vignarooban, K.; Phelan, P.; Inamuddin; Kannan, A.M. Recent developments in phase change materials for energy storage applications: A review. Int. J. Heat Mass Transf. 2019, 129, 491–523. [Google Scholar] [CrossRef]
- Kuznik, F.; Virgone, J. Experimental assessment of a phase change material for wall building use. Appl. Energy 2009, 86, 2038–2046. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Awbi, H.B. Performance of phase change material boards under natural convection. Build. Environ. 2009, 44, 1788–1793. [Google Scholar] [CrossRef]
- Zhang, N.; Yuan, Y.; Cao, X.; Du, Y.; Zhang, Z.; Gui, Y. Latent Heat Thermal Energy Storage Systems with Solid–Liquid Phase Change Materials: A Review. Adv. Eng. Mater. 2018, 20, 1–30. [Google Scholar] [CrossRef]
- Bakan, G.; Gerislioglu, B.; Dirisaglik, F.; Jurado, Z.; Sullivan, L.; Dana, A.; Lam, C.; Gokirmak, A.; Silva, H. Extracting the temperature distribution on a phase-change memory cell during crystallization. J. Appl. Phys. 2016, 120, 164504. [Google Scholar] [CrossRef] [Green Version]
- Gerislioglu, B.; Bakan, G.; Ahuja, R.; Adam, J.; Mishra, Y.K.; Ahmadivand, A. The role of Ge2Sb2Te5 in enhancing the performance of functional plasmonic devices. Mater. Today Phys. 2020, 12, 100178. [Google Scholar] [CrossRef]
- Kuznik, F.; David, D.; Johannes, K.; Roux, J.J. A review on phase change materials integrated in building walls. Renew. Sustain. Energy Rev. 2011, 15, 379–391. [Google Scholar] [CrossRef] [Green Version]
- Zhou, D.; Zhao, C.Y.; Tian, Y. Review on thermal energy storage with phase change materials (PCMs) in building applications. Appl. Energy 2012, 92, 593–605. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.; Choi, K.; Kim, Y.; Lee, K.; Lee, K. Feasibility study on a novel cooling technique using a phase change material in an automotive engine. Energy 2010, 35, 478–484. [Google Scholar] [CrossRef]
- Yu, X.; Li, Z.; Lu, Y.; Huang, R.; Roskilly, A.P. Investigation of organic Rankine cycle integrated with double latent thermal energy storage for engine waste heat recovery. Energy 2019, 170, 1098–1112. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.; Zhu, N.; Chang, C.; Wang, D.; Yang, S.; Ma, S. A methodological concept for phase change material selection based on multi-criteria decision making (MCDM): A case study. Energy 2018, 165, 1085–1096. [Google Scholar] [CrossRef]
- Amer, A.E.; Rahmani, K.; Lebedev, V.A. Using the Analytic Hierarchy Process ({AHP}) method for selection of phase change materials for solar energy storage applications. J. Phys. Conf. Ser. 2020, 1614, 12022. [Google Scholar] [CrossRef]
- Mukhamet, T.; Kobeyev, S.; Nadeem, A.; Memon, S.A. Ranking PCMs for building façade applications using multi-criteria decision-making tools combined with energy simulations. Energy 2021, 215, 119102. [Google Scholar] [CrossRef]
- Méndez, A.; Martínez-Gómez, J.; Rodríguez, F.; Nicolalde, J.F. Selección de un material de cambio de fase mediante el uso del método de selección multicriterio para su uso en un sistema de almacenamiento térmico automotriz. RISTI Rev. Iber. Sist. Tecnol. Inf. 2020, 113–125. Available online: https://www.proquest.com/openview/63deba1836c13b0f5ceb448dbcbfa2e3/1?pq-origsite=gscholar&cbl=1006393 (accessed on 15 January 2021).
- Amoozad Mahdiraji, H.; Arzaghi, S.; Stauskis, G.; Zavadskas, E.K. A Hybrid Fuzzy BWM-COPRAS Method for Analyzing Key Factors of Sustainable Architecture. Sustainability 2018, 10, 1626. [Google Scholar] [CrossRef] [Green Version]
- Shojaeefard, M.H.; Khalkhali, A.; Miandoabchi, E. Multi-criteria decision making approach for selecting the best friction distribution in superplastic forming of a vehicle component. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2014, 230, 146–157. [Google Scholar] [CrossRef]
- Singh, R.P.; Xu, H.; Kaushik, S.C.; Rakshit, D.; Romagnoli, A. Charging performance evaluation of finned conical thermal storage system encapsulated with nano-enhanced phase change material. Appl. Therm. Eng. 2019, 151, 176–190. [Google Scholar] [CrossRef]
- Dhir, D.K. Thermo-mechanical performance of automotive disc brakes. Mater. Today Proc. 2018, 5, 1864–1871. [Google Scholar] [CrossRef]
- Rastogi, M.; Chauhan, A.; Vaish, R.; Kishan, A. Selection and performance assessment of Phase Change Materials for heating, ventilation and air-conditioning applications. Energy Convers. Manag. 2015, 89, 260–269. [Google Scholar] [CrossRef]
- Odu, G.O. Weighting methods for multi-criteria decision making technique. J. Appl. Sci. Environ. Manag. 2019, 23, 1449. [Google Scholar] [CrossRef] [Green Version]
- Shekhovtsov, A.; Salabun, W. A comparative case study of the VIKOR and TOPSIS rankings similarity. Procedia Comput. Sci. 2020, 176, 3730–3740. [Google Scholar] [CrossRef]
- Beltrán, R.D.; Martínez-Gómez, J. Analysis of phase change materials (PCM) for building wallboards based on the effect of environment. J. Build. Eng. 2019, 24, 100726. [Google Scholar] [CrossRef]
- Mousavi-nasab, S.H.; Sotoudeh-anvai, A. A comprehensive MCDM-based approach using TOPSIS, COPRAS and DEA as an auxiliary tool for material selection problems. Mater. Des. 2017, 121, 237–253. [Google Scholar] [CrossRef]
- Mousavi-Nasab, S.H.; Sotoudeh-Anvari, A. A new multi-criteria decision making approach for sustainable material selection problem: A critical study on rank reversal problem. J. Clean. Prod. 2018, 182, 466–484. [Google Scholar] [CrossRef]
- Granta Design Limited. CES-Edupack; Granta Design Limited: Cambridge, UK, 2019. [Google Scholar]
- Dadour, I.R.; Almanjahie, I.; Fowkes, N.D.; Keady, G.; Vijayan, K. Temperature variations in a parked vehicle. Forensic Sci. Int. 2011, 207, 205–211. [Google Scholar] [CrossRef]
- Cengel, Y.; Boles, M.A. Termodinámica, 8th ed.; McGraw-Hill Interamericana: New York, NY, USA, 2015. [Google Scholar]
- Nadeem, A.; Rakhman, K.; Hossain, M.A. Phase Change Materials Ranking by Using the Analytic Hierarchy Process. Proc. Int. Struct. Eng. Constr. 2020, 7, CPM-09-1–CPM-09-6. [Google Scholar] [CrossRef]
- Jeya Girubha, R.; Vinodh, S. Application of fuzzy VIKOR and environmental impact analysis for material selection of an automotive component. Mater. Des. 2012, 37, 478–486. [Google Scholar] [CrossRef]
- Kumar, A.; Kothari, R.; Sahu, S.K.; Kundalwal, S.I. Selection of phase-change material for thermal management of electronic devices using multi-attribute decision-making technique. Int. J. Energy Res. 2021, 45, 2023–2042. [Google Scholar] [CrossRef]
- Chatterjee, P.; Athawale, V.M.; Chakraborty, S. Materials selection using complex proportional assessment and evaluation of mixed data methods. Mater. Des. 2011, 32, 851–860. [Google Scholar] [CrossRef]
- Socaciu, L.; Giurgiu, O.; Banyai, D.; Simion, M. PCM selection using AHP method to maintain thermal comfort of the vehicle occupants. Energy Procedia 2016, 85, 489–497. [Google Scholar] [CrossRef] [Green Version]
- Holmer, I.; Nilsson, H.; Bohm, M.; Noren, O. Thermal Aspects of Vehicle Comfort. Appl. Hum. Sci. 1995, 14, 159–165. [Google Scholar] [CrossRef] [Green Version]
- Purusothaman, M.; Saichand, K.; Sam Cornilius, C.; Siva, R. Experimental Investigation of Thermal Performance in a Vehicle Cabin Test Setup with Pcm in the Roof. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2017. [Google Scholar] [CrossRef] [Green Version]
- Saleel, C.A.; Mujeebu, M.A.; Algarni, S. Coconut oil as phase change material to maintain thermal comfort in passenger vehicles. J. Therm. Anal. Calorim. 2019, 136, 629–636. [Google Scholar] [CrossRef]
- Oró, E.; de Jong, E.; Cabeza, L.F. Experimental analysis of a car incorporating phase change material. J. Energy Storage 2016, 7, 131–135. [Google Scholar] [CrossRef] [Green Version]
- Arıcı, M.; Bilgin, F.; Nižetić, S.; Karabay, H. PCM integrated to external building walls: An optimization study on maximum activation of latent heat. Appl. Therm. Eng. 2020, 165, 114560. [Google Scholar] [CrossRef]
Compound (M) | Phase-Change Temp (°C) | Density (kg/m3) | Heat of Fusion (kJ/kg) | Specific Heat Capacity (kJ/kgK) | Thermal Conductivity (W/mK) | |
---|---|---|---|---|---|---|
RUBITHERM GmbH, PCM SP 24 E | M1 | 24–35 | 1500 | 190 | 2 | 0.6 |
PlusICE PCM, S23 | M2 | 23 | 1530 | 175 | 2.2 | 0.54 |
savENRG PCM-HS24P | M3 | 24 | 1820 | 185 | 2.26 | 0.5–1.09 |
PUR-PCM, BASF Polyurethanes GmbH | M4 | 22 | 970 | 365 | 2 | 0.19 |
PlusICE PCM, S17 | M5 | 17 | 1525 | 160 | 1.9 | 0.43 |
CoolZONE23, Armstrong | M6 | 21–22 | 770 | 342 | 2 | 0.2 |
savENRG PCM-HS22P | M7 | 23 | 1540 | 185 | 3.05 | 0.5–1.09 |
ThermalCORE 23 C/ 73 F, USA | M8 | 22–24 | 770 | 342 | 2.2 | 0.2 |
Weber.murclima 23, St. Gobain-weber | M9 | 22–24 | 950 | 170 | 2.32 | 0.38 |
RUBITHERM GmbH, PCM RT 25 HC | M10 | 22–26 | 880 | 230 | 2 | 0.2 |
PlusICE PCM, PCM, A25H | M11 | 25 | 810 | 226 | 2.15 | 0.18 |
PlusICE PCM, A22H | M12 | 22 | 820 | 216 | 2.85 | 0.18 |
PlusICE PCM, A25 | M13 | 25 | 785 | 150 | 2.26 | 0.18 |
PlusICE PCM, A24 | M14 | 24 | 790 | 145 | 2.22 | 0.18 |
PCM-Akustikputz 23, SchreffGmbh& Co. | M15 | 21–22 | 400 | 196 | 1.7 | 0.08 |
Compound (M) | |||
---|---|---|---|
RUBITHERM GmbH, PCM SP 24 E | M1 | 285 | 0.2 |
PlusICE PCM, S23 | M2 | 267.75 | 0.16042 |
savENRG PCM-HS24P | M3 | 336.7 | 0.12161 |
PUR-PCM, BASF Polyurethanes GmbH | M4 | 354.05 | 0.09793 |
PlusICE PCM, S17 | M5 | 244 | 0.14840 |
CoolZONE23, Armstrong | M6 | 263.34 | 0.12987013 |
savENRG PCM-HS22P | M7 | 284.9 | 0.10631 |
ThermalCORE 23 C/ 73 F, USA | M8 | 263.34 | 0.11806 |
Weber.murclima 23, St. Gobain-weber | M9 | 161.5 | 0.17241 |
RUBITHERM GmbH, PCM RT 25 HC | M10 | 202.4 | 0.11363 |
PlusICE PCM, PCM, A25H | M11 | 183.06 | 0.10335 |
PlusICE PCM, A22H | M12 | 177.12 | 0.07702 |
PlusICE PCM, A25 | M13 | 117.75 | 0.101459 |
PlusICE PCM, A24 | M14 | 114.55 | 0.10263428 |
PCM-Akustikputz 23, SchreffGmbh& Co. | M15 | 78.4 | 0.11764 |
Element | Parameter |
---|---|
Roof Initial Temperature | 12 °C |
Roof Final Temperature | 45 °C |
Temperature Time Lapse | 5 h |
PCM Initial Temperature | 12 °C |
Internal Air Initial Temperature | 12 °C |
Environmental Temperature | 24 °C |
Convection coefficient | 12 W/m2 * K |
Software | Solidworks 2020 |
Mesher | Blended curvature-based mesh |
Mesh Quality | High |
Jacobian Points | 4 |
Max element size | 22 mm |
Element | Parameter |
---|---|
Roof Initial Temperature | 45 °C |
Roof Final Temperature | 12 °C |
Temperature Time Lapse | 15 h |
PCM Initial Temperature | 40 °C |
Internal Air Initial Temperature | 37 °C |
Environmental Temperature | 24 °C |
Convection coefficient | 12 W/m2 * K |
Software | Solidworks 2020 |
Mesher | Blended curvature-based mesh |
Mesh Quality | High |
Jacobian Points | 4 |
Max element size | 22 mm |
Criteria | Phase-Change Temp (°C) | Density (kg/m3) | Heat of Fusion (kJ/kg) | Specific Heat Capacity (kJ/kgK) | Thermal Conductivity (W/mK) | FOM1 | FOM2 |
---|---|---|---|---|---|---|---|
Phase-change Temp (°C) | 1 | 3 | 3 | 0.33 | 0.33 | 0.33 | 0.33 |
Density (kg/m3) | 0.33 | 1 | 0.2 | 0.20 | 0.33 | 0.33 | 0.33 |
Heat of fusion (kJ/kg) | 0.33 | 5 | 1 | 0.33 | 0.33 | 1 | 1 |
Specific heat capacity (kJ/kgK) | 3 | 5 | 3 | 1 | 3 | 3 | 3 |
Thermal conductivity (W/mK) | 3 | 3 | 3 | 0 | 1 | 1 | 3 |
FOM1 | 3 | 3 | 1 | 0 | 1.00 | 1 | 1 |
FOM2 | 3 | 3 | 1 | 0 | 0.33 | 1 | 1 |
Summatory | 13.67 | 23 | 12.20 | 2.87 | 6.33 | 7.67 | 9.67 |
Phase-Change Temp (°C) | Density (kg/m3) | Heat of Fusion (kJ/kg) | Specific Heat Capacity (kJ/kgK) | Thermal Conductivity (W/mK) | FOM1 | FOM2 |
---|---|---|---|---|---|---|
0.0732 | 0.1304 | 0.2459 | 0.12 | 0.0526 | 0.04 | 0.03 |
0.0244 | 0.0435 | 0.0164 | 0.07 | 0.0526 | 0.04 | 0.03 |
0.0244 | 0.2174 | 0.0820 | 0.12 | 0.0526 | 0.13 | 0.10 |
0.2195 | 0.2174 | 0.2459 | 0.3488 | 0.4737 | 0.39 | 0.31 |
0.2195 | 0.1304 | 0.2459 | 0.12 | 0.1579 | 0.13 | 0.31 |
0.2195 | 0.1304 | 0.0820 | 0.1163 | 0.1579 | 0.13 | 0.10 |
0.2195 | 0.1304 | 0.0820 | 0.1163 | 0.0526 | 0.13 | 0.10 |
Criteria | Phase-Change Temp (°C) | Density (kg/m3) | Heat of Fusion (kJ/kg) | Specific Heat Capacity (kJ/kgK) | Thermal Conductivity (W/mK) | FOM1 | FOM2 |
---|---|---|---|---|---|---|---|
Compound | T1 | T2 | T3 | T4 | T5 | T6 | T7 |
Weight | 0.099 | 0.041 | 0.104 | 0.315 | 0.187 | 0.134 | 0.119 |
N × T | Priority/Weight | |
---|---|---|
T1 | 0.785 | 7.89 |
T2 | 0.305 | 7.49 |
T3 | 0.761 | 7.33 |
T4 | 2.451 | 7.77 |
T5 | 1.516 | 8.10 |
T6 | 1.070 | 7.97 |
T7 | 0.945 | 7.93 |
Summatory | 7.78 |
Index | Value |
---|---|
Cl | 0.13 |
RI | 1.32 |
CR | 0.099 |
Compound | Phase-Change Temp (°C) | Density (kg/m3) | Heat of Fusion (kJ/kg) | Specific Heat Capacity (kJ/kgK) | Thermal Conductivity (W/mK) | FOM1 | FOM2 |
---|---|---|---|---|---|---|---|
M1 | 0.012 | 0.031 | 0.099 | 0.245 | 0 | 0.034 | 0.119 |
M2 | 0.025 | 0.032 | 0.101 | 0.199 | 0.022 | 0.042 | 0.081 |
M3 | 0.012 | 0.041 | 0.100 | 0.184 | 0.022 | 0.008 | 0.043 |
M4 | 0.037 | 0.016 | 0.070 | 0.245 | 0.148 | 0 | 0.020 |
M5 | 0.099 | 0.032 | 0.104 | 0.269 | 0.061 | 0.054 | 0.069 |
M6 | 0.050 | 0.011 | 0.074 | 0.245 | 0.144 | 0.044 | 0.051 |
M7 | 0.025 | 0.041 | 0.100 | 0 | 0.022 | 0.034 | 0.028 |
M8 | 0.037 | 0.011 | 0.074 | 0.199 | 0.144 | 0.044 | 0.040 |
M9 | 0.037 | 0.016 | 0.102 | 0.170 | 0.079 | 0.094 | 0.092 |
M10 | 0.037 | 0.014 | 0.092 | 0.245 | 0.144 | 0.074 | 0.035 |
M11 | 0 | 0.012 | 0.093 | 0.210 | 0.151 | 0.083 | 0.026 |
M12 | 0.037 | 0.012 | 0.095 | 0.047 | 0.151 | 0.086 | 0.000 |
M13 | 0 | 0.011 | 0.001 | 0.184 | 0.151 | 0.115 | 0.024 |
M14 | 0.012 | 0.011 | 0.000 | 0.194 | 0.151 | 0.117 | 0.025 |
M15 | 0.050 | 0 | 0.064 | 0.315 | 0.187 | 0.134 | 0.039 |
Compound | Si | Ri | Qi | Ranking |
---|---|---|---|---|
M1 | 0.541 | 0.245 | 0.607 | 11 |
M2 | 0.502 | 0.199 | 0.463 | 6 |
M3 | 0.411 | 0.184 | 0.346 | 3 |
M4 | 0.537 | 0.245 | 0.603 | 10 |
M5 | 0.688 | 0.269 | 0.797 | 14 |
M6 | 0.619 | 0.245 | 0.679 | 12 |
M7 | 0.249 | 0.100 | 0 | 1 |
M8 | 0.548 | 0.199 | 0.506 | 8 |
M9 | 0.591 | 0.170 | 0.480 | 7 |
M10 | 0.642 | 0.245 | 0.701 | 13 |
M11 | 0.575 | 0.210 | 0.557 | 9 |
M12 | 0.428 | 0.151 | 0.285 | 2 |
M13 | 0.486 | 0.184 | 0.416 | 4 |
M14 | 0.510 | 0.194 | 0.460 | 5 |
M15 | 0.790 | 0.315 | 1.000 | 15 |
Compound | Phase-Change Temp (°C) | Density (kg/m3) | Heat of Fusion (kJ/kg) | Specific Heat Capacity (kJ/kgK) | Thermal Conductivity (W/mK) | FOM1 | FOM2 |
---|---|---|---|---|---|---|---|
M1 | 0.275 | 0.335 | 0.214 | 0.231 | 0.440 | 0.312 | 0.401 |
M2 | 0.263 | 0.341 | 0.197 | 0.254 | 0.396 | 0.293 | 0.322 |
M3 | 0.275 | 0.406 | 0.208 | 0.261 | 0.396 | 0.368 | 0.244 |
M4 | 0.252 | 0.216 | 0.411 | 0.231 | 0.139 | 0.387 | 0.197 |
M5 | 0.195 | 0.340 | 0.180 | 0.220 | 0.316 | 0.267 | 0.298 |
M6 | 0.240 | 0.172 | 0.385 | 0.231 | 0.147 | 0.288 | 0.261 |
M7 | 0.263 | 0.406 | 0.208 | 0.353 | 0.396 | 0.312 | 0.213 |
M8 | 0.252 | 0.172 | 0.385 | 0.254 | 0.147 | 0.288 | 0.237 |
M9 | 0.252 | 0.212 | 0.191 | 0.268 | 0.279 | 0.177 | 0.346 |
M10 | 0.252 | 0.196 | 0.259 | 0.231 | 0.147 | 0.221 | 0.228 |
M11 | 0.286 | 0.181 | 0.254 | 0.249 | 0.132 | 0.200 | 0.207 |
M12 | 0.252 | 0.183 | 0.243 | 0.330 | 0.132 | 0.194 | 0.155 |
M13 | 0.286 | 0.175 | 0.169 | 0.261 | 0.132 | 0.129 | 0.204 |
M14 | 0.275 | 0.176 | 0.163 | 0.257 | 0.132 | 0.125 | 0.206 |
M15 | 0.240 | 0.089 | 0.221 | 0.197 | 0.059 | 0.086 | 0.236 |
Compound | Phase-Change Temp (°C) | Density (kg/m3) | Heat of Fusion (kJ/kg) | Specific Heat Capacity (kJ/kgK) | Thermal Conductivity (W/mK) | FOM1 | FOM2 |
---|---|---|---|---|---|---|---|
M1 | 0.027 | 0.014 | 0.022 | 0.073 | 0.082 | 0.042 | 0.048 |
M2 | 0.026 | 0.014 | 0.020 | 0.080 | 0.074 | 0.039 | 0.038 |
M3 | 0.027 | 0.017 | 0.022 | 0.082 | 0.074 | 0.049 | 0.029 |
M4 | 0.025 | 0.009 | 0.043 | 0.073 | 0.026 | 0.052 | 0.023 |
M5 | 0.019 | 0.014 | 0.019 | 0.069 | 0.059 | 0.036 | 0.036 |
M6 | 0.024 | 0.007 | 0.040 | 0.073 | 0.027 | 0.039 | 0.031 |
M7 | 0.026 | 0.017 | 0.022 | 0.111 | 0.074 | 0.042 | 0.025 |
M8 | 0.025 | 0.007 | 0.040 | 0.080 | 0.027 | 0.039 | 0.028 |
M9 | 0.025 | 0.009 | 0.020 | 0.085 | 0.052 | 0.024 | 0.041 |
M10 | 0.025 | 0.008 | 0.027 | 0.073 | 0.027 | 0.030 | 0.027 |
M11 | 0.028 | 0.007 | 0.026 | 0.078 | 0.025 | 0.027 | 0.025 |
M12 | 0.025 | 0.007 | 0.025 | 0.104 | 0.025 | 0.026 | 0.018 |
M13 | 0.028 | 0.007 | 0.018 | 0.082 | 0.025 | 0.017 | 0.024 |
M14 | 0.027 | 0.007 | 0.017 | 0.081 | 0.025 | 0.017 | 0.025 |
M15 | 0.024 | 0.004 | 0.023 | 0.062 | 0.011 | 0.012 | 0.028 |
Values +/− | Phase-Change Temp (°C) | Density (kg/m3) | Heat of Fusion (kJ/kg) | Specific Heat Capacity (kJ/kgK) | Thermal Conductivity (W/mK) | FOM1 | FOM2 |
---|---|---|---|---|---|---|---|
V+ | 0.028 | 0.004 | 0.043 | 0.111 | 0.082 | 0.052 | 0.018 |
V− | 0.019 | 0.017 | 0.017 | 0.062 | 0.011 | 0.012 | 0.048 |
Compound | Si+ | Si− | Pi | Ranking |
---|---|---|---|---|
M1 | 0.054 | 0.079 | 0.593 | 4 |
M2 | 0.047 | 0.073 | 0.608 | 3 |
M3 | 0.040 | 0.079 | 0.663 | 2 |
M4 | 0.069 | 0.058 | 0.457 | 8 |
M5 | 0.060 | 0.056 | 0.482 | 5 |
M6 | 0.070 | 0.045 | 0.394 | 10 |
M7 | 0.029 | 0.089 | 0.755 | 1 |
M8 | 0.065 | 0.049 | 0.427 | 9 |
M9 | 0.059 | 0.050 | 0.458 | 7 |
M10 | 0.073 | 0.037 | 0.335 | 12 |
M11 | 0.073 | 0.039 | 0.345 | 11 |
M12 | 0.066 | 0.057 | 0.461 | 6 |
M13 | 0.078 | 0.037 | 0.322 | 13 |
M14 | 0.079 | 0.036 | 0.312 | 14 |
M15 | 0.098 | 0.025 | 0.201 | 15 |
Compound | Phase-Change Temp (°C) | Density (kg/m3) | Heat of Fusion (kJ/kg) | Specific Heat Capacity (kJ/kgK) | Thermal Conductivity (W/mK) | FOM1 | FOM2 |
---|---|---|---|---|---|---|---|
M1 | 0.071 | 0.093 | 0.058 | 0.060 | 0.130 | 0.085 | 0.107 |
M2 | 0.068 | 0.095 | 0.053 | 0.066 | 0.117 | 0.080 | 0.086 |
M3 | 0.071 | 0.113 | 0.056 | 0.068 | 0.117 | 0.101 | 0.065 |
M4 | 0.065 | 0.060 | 0.111 | 0.060 | 0.041 | 0.106 | 0.052 |
M5 | 0.050 | 0.094 | 0.049 | 0.057 | 0.093 | 0.073 | 0.079 |
M6 | 0.062 | 0.048 | 0.104 | 0.060 | 0.043 | 0.079 | 0.069 |
M7 | 0.068 | 0.113 | 0.056 | 0.092 | 0.117 | 0.085 | 0.057 |
M8 | 0.065 | 0.048 | 0.104 | 0.066 | 0.043 | 0.079 | 0.063 |
M9 | 0.065 | 0.059 | 0.052 | 0.070 | 0.082 | 0.048 | 0.092 |
M10 | 0.065 | 0.055 | 0.070 | 0.060 | 0.043 | 0.061 | 0.061 |
M11 | 0.074 | 0.050 | 0.069 | 0.065 | 0.039 | 0.055 | 0.055 |
M12 | 0.065 | 0.051 | 0.066 | 0.086 | 0.039 | 0.053 | 0.041 |
M13 | 0.074 | 0.049 | 0.046 | 0.068 | 0.039 | 0.035 | 0.054 |
M14 | 0.071 | 0.049 | 0.044 | 0.067 | 0.039 | 0.034 | 0.055 |
M15 | 0.062 | 0.025 | 0.060 | 0.051 | 0.017 | 0.024 | 0.063 |
Compound | Phase-Change Temp (°C) | Density (kg/m3) | Heat of Fusion (kJ/kg) | Specific Heat Capacity (kJ/kgK) | Thermal Conductivity (W/mK) | FOM1 | FOM2 |
---|---|---|---|---|---|---|---|
M1 | 0.0071 | 0.0038 | 0.0060 | 0.0190 | 0.0243 | 0.0115 | 0.0127 |
M2 | 0.0068 | 0.0039 | 0.0055 | 0.0209 | 0.0219 | 0.0108 | 0.0102 |
M3 | 0.0071 | 0.0046 | 0.0059 | 0.0215 | 0.0219 | 0.0136 | 0.0078 |
M4 | 0.0065 | 0.0024 | 0.0116 | 0.0190 | 0.0077 | 0.0143 | 0.0062 |
M5 | 0.0050 | 0.0038 | 0.0051 | 0.0181 | 0.0174 | 0.0098 | 0.0095 |
M6 | 0.0062 | 0.0019 | 0.0108 | 0.0190 | 0.0081 | 0.0106 | 0.0083 |
M7 | 0.0068 | 0.0046 | 0.0059 | 0.0290 | 0.0219 | 0.0115 | 0.0068 |
M8 | 0.0065 | 0.0019 | 0.0108 | 0.0209 | 0.0081 | 0.0106 | 0.0075 |
M9 | 0.0065 | 0.0024 | 0.0054 | 0.0221 | 0.0154 | 0.0065 | 0.0110 |
M10 | 0.0065 | 0.0022 | 0.0073 | 0.0190 | 0.0081 | 0.0082 | 0.0072 |
M11 | 0.0074 | 0.0020 | 0.0072 | 0.0205 | 0.0073 | 0.0074 | 0.0066 |
M12 | 0.0065 | 0.0021 | 0.0068 | 0.0271 | 0.0073 | 0.0071 | 0.0049 |
M13 | 0.0074 | 0.0020 | 0.0048 | 0.0215 | 0.0073 | 0.0047 | 0.0065 |
M14 | 0.0071 | 0.0020 | 0.0046 | 0.0211 | 0.0073 | 0.0046 | 0.0065 |
M15 | 0.0062 | 0.0010 | 0.0062 | 0.0162 | 0.0032 | 0.0032 | 0.0075 |
Compound | S+ i | S− i |
---|---|---|
M1 | 0.068 | 0.017 |
M2 | 0.066 | 0.014 |
M3 | 0.070 | 0.012 |
M4 | 0.059 | 0.009 |
M5 | 0.055 | 0.013 |
M6 | 0.055 | 0.010 |
M7 | 0.075 | 0.011 |
M8 | 0.057 | 0.009 |
M9 | 0.056 | 0.013 |
M10 | 0.049 | 0.009 |
M11 | 0.050 | 0.009 |
M12 | 0.055 | 0.007 |
M13 | 0.046 | 0.008 |
M14 | 0.045 | 0.009 |
M15 | 0.035 | 0.009 |
Compound | Qi | Ui | Rank |
---|---|---|---|
M1 | 0.074 | 88% | 3 |
M2 | 0.074 | 87% | 4 |
M3 | 0.079 | 93% | 2 |
M4 | 0.071 | 85% | 5 |
M5 | 0.064 | 75% | 10 |
M6 | 0.065 | 77% | 8 |
M7 | 0.085 | 100% | 1 |
M8 | 0.068 | 81% | 7 |
M9 | 0.064 | 76% | 9 |
M10 | 0.060 | 72% | 12 |
M11 | 0.062 | 74% | 11 |
M12 | 0.070 | 83% | 6 |
M13 | 0.058 | 69% | 13 |
M14 | 0.057 | 68% | 14 |
M15 | 0.048 | 56% | 15 |
Correlation of 15 Materials Ranked | |||
---|---|---|---|
COPRAS | TOPSIS | VIKOR | |
COPRAS | - | 0.914 | 0.439 |
TOPSIS | - | - | 0.407 |
Compound | Phase-Change Temp (°C) | Density (kg/m3) | Heat of Fusion (kJ/kg) | Specific Heat Capacity (kJ/kgK) | Thermal Conductivity (W/mK) |
---|---|---|---|---|---|
savENRG PCM-HS22P | 23 | 1540 | 185 | 3.05 | 0.54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nicolalde, J.F.; Cabrera, M.; Martínez-Gómez, J.; Salazar, R.B.; Reyes, E. Selection of a PCM for a Vehicle’s Rooftop by Multicriteria Decision Methods and Simulation. Appl. Sci. 2021, 11, 6359. https://doi.org/10.3390/app11146359
Nicolalde JF, Cabrera M, Martínez-Gómez J, Salazar RB, Reyes E. Selection of a PCM for a Vehicle’s Rooftop by Multicriteria Decision Methods and Simulation. Applied Sciences. 2021; 11(14):6359. https://doi.org/10.3390/app11146359
Chicago/Turabian StyleNicolalde, Juan Francisco, Mario Cabrera, Javier Martínez-Gómez, Rodger Benjamín Salazar, and Evelyn Reyes. 2021. "Selection of a PCM for a Vehicle’s Rooftop by Multicriteria Decision Methods and Simulation" Applied Sciences 11, no. 14: 6359. https://doi.org/10.3390/app11146359
APA StyleNicolalde, J. F., Cabrera, M., Martínez-Gómez, J., Salazar, R. B., & Reyes, E. (2021). Selection of a PCM for a Vehicle’s Rooftop by Multicriteria Decision Methods and Simulation. Applied Sciences, 11(14), 6359. https://doi.org/10.3390/app11146359