A Transfer Learning Architecture Based on a Support Vector Machine for Histopathology Image Classification
Abstract
:1. Introduction
2. Introduction of Background Knowledge
2.1. Transfer Learning
2.2. AlexNet Architecture
2.3. Support Vector Machine
3. Proposed Model of Deep Transfer Learning Based on SVM Classifier
3.1. Histopathology Image Dataset
3.2. Deep Learning Architectures for Histopathology Image Classification
4. Experiments and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reihs, R.; Pohn, B.; Zatloukal, K.; Holzinger, A.; Müller, H. NLP for the Generation of Training Data Sets for Ontolo-gy-Guided Weakly-Supervised Machine Learning in Digital Pathology. In Proceedings of the 2019 IEEE Symposium on Computers and Communications (ISCC), Barcelona, Spain, 30 June–3 July 2019; pp. 1072–1076. [Google Scholar]
- Mormont, R.; Geurts, P.; Maree, R. Comparison of Deep Transfer Learning Strategies for Digital Pathology. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–22 June 2018; pp. 2262–2271. [Google Scholar]
- Foucart, A.; Debeir, O.; Decaestecker, C. SNOW: Semi-Supervised, Noisy And/Or Weak Data for Deep Learning In Digi-tal Pathology. In Proceedings of the 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), Venice, Italy, 8–11 April 2019; pp. 1869–1872. [Google Scholar]
- Sari, C.T.; Gunduz-Demir, C. Unsupervised Feature Extraction via Deep Learning for Histopathological Classification of Colon Tissue Images. IEEE Trans. Med Imaging 2019, 38, 1139–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, A.I.; Dunn, C.M.; Hale, M.; Hutchins, G.G.A.; Treanor, D.E. The Effect of Quality Control on Accuracy of Digital Pathology Image Analysis. IEEE J. Biomed. Health Inform. 2021, 25, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Shao, L.; Zhu, F.; Li, X. Transfer Learning for Visual Categorization: A Survey. IEEE Trans. Neural Networks Learn. Syst. 2015, 26, 1019–1034. [Google Scholar] [CrossRef] [PubMed]
- Alawad, M.; Gao, S.; Qiu, J.; Schaefferkoetter, N.; Hinkle, J.; Yoon, H.-J.; Christian, J.B.; Wu, X.-C.; Durbin, E.B.; Jeong, J.C.; et al. Deep Transfer Learning Across Cancer Registries for Information Extraction from Pathology Reports. In Proceedings of the 2019 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), Chicago, IL, USA, 19–22 May 2019; pp. 1–4. [Google Scholar]
- Verlekar, T.T.; Correia, P.; Soares, L. Using transfer learning for classification of gait pathologies. In Proceedings of the 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Madrid, Spain, 3–6 December 2018; pp. 2376–2381. [Google Scholar]
- Alhussein, M.; Muhammad, G. Voice Pathology Detection Using Deep Learning on Mobile Healthcare Framework. IEEE Access 2018, 6, 41034–41041. [Google Scholar] [CrossRef]
- He, S.; Ruan, J.; Long, Y.; Wang, J.; Wu, C.; Ye, G.; Zhou, J.; Yue, J.; Zhang, Y. Combining Deep Learning with Traditional Features for Classification and Segmentation of Pathological Images of Breast Cancer. In Proceedings of the 2018 11th International Symposium on Computational Intelligence and Design (ISCID), Hangzhou, China, 8–9 December 2018; pp. 3–6. [Google Scholar]
- AlTalli, H.; Alhanjouri, M. Chest Pathology Detection in X-Ray Scans Using Social Spider Optimization Algorithm with Generalization Deep Learning. In Proceedings of the 2020 International Conference on Assistive and Rehabilitation Technologies (iCareTech), Gaza, Palestine, 28–29 August 2020; pp. 126–130. [Google Scholar]
- Huang, Y.M.; Du, S.X. Weighted support vector machine for classification with uneven training class sizes. In Proceedings of the 2005 International Conference on Machine Learning and Cybernetics, Guangzhou, China, 18–21 August 2005; Volume 7, pp. 4365–4369. [Google Scholar]
- Wu, C.; Lv, X.; Cao, X.; Mo, Y.; Zhu, J. Classification of Metallogenic Favourability Degree Using Support Vector Ma-chines. In Proceedings of the 2010 International Conference on Intelligent Computation Technology and Automation, Changsha, China, 11–12 May 2010; pp. 932–934. [Google Scholar]
- Mohan, L.; Pant, J.; Suyal, P.; Kumar, A. Support Vector Machine Accuracy Improvement with Classification. In Proceedings of the 2020 12th International Conference on Computational Intelligence and Communication Networks (CICN), Bhimtal, India, 25–26 September 2020; pp. 477–481. [Google Scholar]
- Utkin, L.V.; Chekh, A.I.; Zhuk, Y.A.; Utkin, L.V.; Chekh, A.I.; Zhuk, Y.A. Binary classification SVM-based algorithms with interval-valued training data using triangular and Epanechnikov kernels. Neural Networks 2016, 80, 53–66. [Google Scholar] [CrossRef] [PubMed]
- Al-Shargie, F.; Tang, T.B.; Badruddin, N.; Kiguchi, M.; Al-Shargie, F.; Tang, T.B.; Badruddin, N.; Kiguchi, M. Towards multilevel mental stress assessment using SVM with ECOC: An EEG approach. Med Biol. Eng. Comput. 2018, 56, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Xu, W.; Hu, J.; Guo, J. A Multiclass SVM Method via Probabilistic Error-Correcting Output Codes. In Proceedings of the 2010 International Conference on Internet Technology and Applications, Wuhan, China, 20–22 August 2010; pp. 1–4. [Google Scholar] [CrossRef]
- Gu, X.; Deng, F.; Gao, X.; Zhou, R. An Improved Sensor Fault Diagnosis Scheme Based on TA-LSSVM and ECOC-SVM. J. Syst. Sci. Complex. 2017, 31, 372–384. [Google Scholar] [CrossRef]
- Bizzego, A.; Bussola, N.; Chierici, M.; Maggio, V.; Francescatto, M.; Cima, L.; Cristoforetti, M.; Jurman, G.; Furlanello, C.; Bizzego, A.; et al. Evaluating reproducibility of AI algorithms in digital pathology with DAPPER. PLoS Comput. Biol. 2019, 15, e1006269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, M.; Zhang, D.Y. Artificial intelligence and computational pathology. Lab. Investig. 2021, 101, 412–422. [Google Scholar] [CrossRef] [PubMed]
- Echle, A.; Rindtorff, N.T.; Brinker, T.J.; Luedde, T.; Pearson, A.T.; Kather, J.N. Deep learning in cancer pathology: A new generation of clinical biomarkers. Br. J. Cancer 2021, 124, 686–696. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Roa, A.; Basavanhally, A.; Gonzalez, F.; Gilmore, H.; Feldman, M.; Ganesan, S.; Shih, N.; Tomaszewski, J.; Madabhushi, A. Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks. In Medical Imaging 2014: Digital Pathology; International Society for Optics and Photonics: San Diego, CA, USA, 2014; Volume 9041. [Google Scholar]
- Janowczyk, A.; Madabhushi, A. Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases. J. Pathol. Inf. 2016, 7, 29. [Google Scholar] [CrossRef] [PubMed]
- Borkowski, A.A.; Bui, M.M.; Thomas, L.B.; Wilson, C.P.; DeLand, L.A.; Mastorides, S.M. Lung and Colon Cancer Histopathological Image Dataset (LC25000). arXiv 2019, arXiv:1912.12142v1. [Google Scholar]
Softmax-Based | SVM-Based | Proposed | |
---|---|---|---|
Fold 1 | 0.6887 | 0.5311 | 0.6916 |
Fold 2 | 0.8579 | 0.7525 | 0.8558 |
Fold 3 | 0.8036 | 0.7848 | 0.8150 |
Fold 4 | 0.7720 | 0.6825 | 0.7734 |
Average | 0.7806 | 0.6877 | 0.7840 |
Softmax-Based | SVM-Based | Proposed | |
---|---|---|---|
Fold 1 | 0.9922 | 0.9642 | 0.9942 |
Fold 2 | 0.9962 | 0.9443 | 0.9952 |
Fold 3 | 0.9920 | 0.9550 | 0.9930 |
Fold 4 | 0.9912 | 0.9603 | 0.9952 |
Average | 0.9929 | 0.9560 | 0.9944 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, J.; Lee, J.; Lee, Y. A Transfer Learning Architecture Based on a Support Vector Machine for Histopathology Image Classification. Appl. Sci. 2021, 11, 6380. https://doi.org/10.3390/app11146380
Fan J, Lee J, Lee Y. A Transfer Learning Architecture Based on a Support Vector Machine for Histopathology Image Classification. Applied Sciences. 2021; 11(14):6380. https://doi.org/10.3390/app11146380
Chicago/Turabian StyleFan, Jiayi, JangHyeon Lee, and YongKeun Lee. 2021. "A Transfer Learning Architecture Based on a Support Vector Machine for Histopathology Image Classification" Applied Sciences 11, no. 14: 6380. https://doi.org/10.3390/app11146380