Effects from Fe, P, Ca, Mg, Zn and Cu in Steel Slag on Growth and Metabolite Accumulation of Microalgae: A Review
Abstract
:1. Introduction
2. Composition, Feature and Utilization of Slag
2.1. Slag’s Chemical Composition and Mineral Composition
2.2. Features of Slag
2.2.1. Cementitious Property
2.2.2. Grindability
2.2.3. Stability
2.3. Utilization of Slag
2.3.1. Making Cement and Concrete
2.3.2. Road and Water Conservancy Project Construction
2.3.3. Applications in Sinter Raw Material, CO2 Capture and Flue Gas Desulfurization
2.3.4. Use of Slag in Agriculture
3. Leaching Behavior of Slag
4. Influences of Slag on the Growth of Microalgae
4.1. Influences of Fe in Slag on the Growth and Accumulation of Metabolites of Microalgae
4.2. Influences of P in Slag on the Growth and Accumulation of Metabolites of Microalgae
4.3. Influences of Ca in Slag on the Growth and Accumulation of Metabolites of Microalgae
4.4. Influences of Mg in Slag on the Growth and Accumulation of Metabolites of Microalgae
4.5. Influences of Zn in Slag on the Growth and Accumulation of Metabolites of Microalgae
4.6. Influences of Cu in Slag on the Growth and Accumulation of Metabolites of Microalgae
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tian, J.L.; Zhang, Q. Resource Utilization of Steel Slag and Environmental Pollution Treatment. Resour. Recycl. 2013, 1, 55–57. [Google Scholar]
- World Steel Association. Steel Statistical Yearbook 2020; World Steel Association: Brussels, Belgium, 2020. [Google Scholar]
- Guo, J.L.; Bao, Y.P.; Wang, M. Steel slag in China: Treatment, recycling, and management. Waste Manag. 2018, 78, 318–330. [Google Scholar] [CrossRef]
- Mills-Beale, J.; You, Z. Measuring the Specific Gravity and Absorption of Steel Slag and Crushed Concrete Coarse Aggregates: A Preliminary Study. Airfield Highw. Pavement 2008, 132, 111–121. [Google Scholar]
- Tsakiridis, P.E.; Papadimitriou, G.D.; Tsivilis, S.; Koroneos, C. Utilization of steel slag for Portland cement clinker production. J. Hazard. Mater. 2008, 152, 805–811. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; He, Q.Q.; Yuan, Y.F. On the Recycling of Iron and Steel Slag in Japan. Environ. Sustain. Dev. 2015, 140, 177–178. [Google Scholar]
- Motz, H.; Geiseler, J. Products of steel slags an opportunity to save natural resources. Waste Manag. 2001, 21, 285–293. [Google Scholar] [CrossRef]
- Sorlini, S.; Sanzeni, A.; Rondi, L. Reuse of steel slag in bituminous paving mixtures. J. Hazard. Mater. 2012, 209–210, 84–91. [Google Scholar] [CrossRef]
- Zhu, X.H.; Li, H.L.; Chen, J.Y.; Jiang, F.T. Pollution control efficiency of China’s iron and steel industry: Evidence from different manufacturing processes. J. Clean. Prod. 2019, 240, 118184. [Google Scholar] [CrossRef]
- Huo, B.B.; Li, B.L.; Huang, S.Y.; Chen, C.; Zhang, Y.M.; Banthia, N. Hydration and soundness properties of phosphoric acid modified steel slag powder. Constr. Build. Mater. 2020, 254, 119319. [Google Scholar] [CrossRef]
- Zullaikah, S.; Utomo, A.T.; Yasmin, M.; Ong, L.K.; Ju, Y.H. Ecofuel conversion technology of inedible lipid feedstocks to renewable fuel. Adv. Eco-Fuels Sustain. Environ. 2019, 237–276. [Google Scholar] [CrossRef]
- Mei, H.; Zhang, C.; Yin, D. Survey of Studies on Renewable Energy Production by Microalgae. J. Wuhan Bot. Res. 2008, 26, 650–660. [Google Scholar]
- Chisti, Y. Biodiesel from microalgae. Biotechnol. Adv. 2007, 25, 294–306. [Google Scholar] [CrossRef]
- Demirbas, A.; Demirbas, M.F. Importance of algae oil as a source of biodiesel. Energy Convers. Manag. 2011, 52, 163–170. [Google Scholar] [CrossRef]
- Xia, J.L.; Wan, M.X.; Wang, R.M. Current Status and Progress of Microalgal Biodiese. China Biotechnol. 2009, 29, 118–126. [Google Scholar]
- Sathasivam, R.; Radhakrishnan, R.; Hashem, A.; Allah, E.F.A. Microalgae metabolites: A rich source for food and medicine. Saudi J. Biol. Sci. 2019, 26, 709–722. [Google Scholar] [CrossRef] [PubMed]
- Xia, A.; Sun, C.; Fu, Q.; Liao, Q.; Huang, Y.; Zhu, X.; Li, Q. Biofuel production from wet microalgae biomass: Comparison of physicochemical properties and extraction performance. Energy 2020, 212, 118581. [Google Scholar] [CrossRef]
- Lima, S.; Villanova, V.; Grisafi, F.; Caputo, G.; Brucato, A.; Scargiali, F. Autochthonous microalgae grown in municipal wastewaters as a tool for effectively removing nitrogen and phosphorous. J. Water Process. Eng. 2020, 38, 101647. [Google Scholar] [CrossRef]
- Meng, H.D.; Liu, L. Stability processing technology and application prospect of steel slag. Steelmaking 2009, 25, 73–78. [Google Scholar]
- Qian, G.R.; Xu, G.L.; Li, Y.H.; Wang, H.B. Mineral constitutes petrography and expansion of steel slags with lower alkali basicity. J. Southwest China Inst. Technol. 1997, 12, 35–39. [Google Scholar]
- Zhao, L.J.; Zhang, F. Comprehensive utilization and development prospect of steel slag resources. Mater. Rep. 2020, 34, 319–322+333. [Google Scholar]
- Kourounis, S.; Tsivilis, S.; Tsakiridis, P.; Papadimitriou, G.; Tsibouki, Z. Properties and hydration of blended cements with steelmaking slag. Cem. Concr. Res. 2007, 37, 815–822. [Google Scholar] [CrossRef]
- Su, D.C.; Tang, X.G.; Liu, R.Y.; Xu, Z.N.; Zhang, T.S. Research Progress of Activated Activation Technology of Steel Slag. China Cem. 2009, 4, 57–60. [Google Scholar]
- Liu, Z.; Zhang, D.-W.; Li, L.; Wang, J.-X.; Shao, N.-N.; Wang, D.-M. Microstructure and phase evolution of alkali-activated steel slag during early age. Constr. Build. Mater. 2019, 204, 158–165. [Google Scholar] [CrossRef]
- Guo, H. Basic Study on Steel Slag for its Reconstruction, Composition and Performance. Master’s Thesis, South China University of Technology, Guangzhou, China, 2010. [Google Scholar]
- Baalamurugan, J.; Kumar, V.G.; Chandrasekaran, S.; Balasundar, S.; Venkatraman, B.; Padmapriya, R.; Raja, V.B. Utilization of induction furnace steel slag in concrete as coarse aggregate for gamma radiation shielding. J. Hazard. Mater. 2019, 369, 561–568. [Google Scholar] [CrossRef]
- Tüfekçi, M.; Demirbaş, A.; Genç, H. Evaluation of steel furnace slags as cement additives. Cem. Concr. Res. 1997, 27, 1713–1717. [Google Scholar] [CrossRef]
- Altun, I.A.; Ylmaz, I. Study on steel furnace slags with high MgO as additive in Portland cement. Cem. Concr. Res. 2002, 32, 1247–1249. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, Z.S. Investigation on phosphogypsum–steel slag–granulated blast-furnace slag-limestone cement. Constr. Build. Mater. 2010, 24, 1296–1301. [Google Scholar] [CrossRef]
- Wen, X.L.; Ouyang, D.; Pan, P. Research of high anti-chloride ion permeability of C100 concrete mixed with steel slag. Concrete 2011, 6, 73–75. (In Chinese) [Google Scholar]
- Chen, D.Y.; Tan, K.F. Study on mineral admixture of concrete prepared with electric furnace slag. Bull. Chin. Ceram. Soc. 2006, 25, 73–75. (In Chinese) [Google Scholar]
- Qasrawi, H.; Shalabi, F.; Asi, I. Use of low CaO unprocessed steel slag in concrete as fine aggregate. Constr. Build. Mater. 2009, 23, 1118–1125. [Google Scholar] [CrossRef]
- Papayianni, I.; Anastasiou, E. Production of high-strength concrete using high volume of industrial by-products. Constr. Build. Mater. 2010, 24, 1412–1417. [Google Scholar] [CrossRef]
- Iacobescu, R.; Koumpouri, D.; Pontikes, Y.; Saban, R.; Angelopoulos, G. Valorisation of electric arc furnace steel slag as raw material for low energy belite cements. J. Hazard. Mater. 2011, 196, 287–294. [Google Scholar] [CrossRef]
- Das, B.; Prakash, S.; Reddy, P.S.R.; Misra, V.N. An overview of utilization of slag and sludge from steel industries. Resour. Conserv. Recycl. 2007, 50, 40–57. [Google Scholar] [CrossRef]
- Gu, H.F.; Yao, C.G. Environmental Conservation Efforts and Byproducts Recycling Technologies of JFE. Adv. Mater. Res. 2012, 573–574, 379–382. [Google Scholar] [CrossRef]
- Liu, S.Z. Application of slag in steelmaking. Steelmaking 1994, 6, 54–59. (In Chinese) [Google Scholar]
- Jiang, C.S.; Ding, Q.J.; Wang, F.Z.; Li, C. Chemical and physical charateristics of steel slag and its utilization progress. Overseas Build. Mater. Sci. Technol. 2002, 23, 3–5. (In Chinese) [Google Scholar]
- Zhang, G. Status of comprehensive utilization of steel slag at Baosteel. Baosteel Technol. 2006, 1, 20–24. (In Chinese) [Google Scholar]
- Kunzler, C.; Alves, N.; Pereira, E.; Nienczewski, J.; Ligabue, R.; Einloft, S.; Dullius, J. CO2 storage with indirect carbonation using industrial waste. Energy Procedia 2011, 4, 1010–1017. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.Q.; Zheng, Y.R.; Fu, C.Y. Experimental Study on Sulfur Dioxide Removal from Sintered Flue Gas by Steel Slag. Environ. Pollut. Control. Technol. Equip. 2006, 7, 104–106. [Google Scholar]
- Feng, J.H.; Wang, J.S.; Ke, S.H. The basic study on desulfurization of agglomeration gas by using converter steel sediment. Hebei Polytech. Univ. 2010, 32, 6–9. (In Chinese) [Google Scholar]
- Ding, X.L.; Guo, Y.C.; Tang, S.W.; Zhao, K.; Li, J. Experimental study on wet flue gas desulfurization with scrap slag powder residue. Environ. Eng 2009, 27, 99–102. (In Chinese) [Google Scholar]
- Wu, Z.H.; Zou, Z.S.; Wang, C.Z. Application of converter slags in agriculture. Multipurp. Util. Min. Resour. 2005, 6, 25–28. (In Chinese) [Google Scholar]
- Chen, S.J.; Gao, H.L. Comprehensive Utilization Technology and Prospect of Steel Slag. China South. Met. 2004, 5, 1–4+41. [Google Scholar] [CrossRef]
- Mäkelä, M.; Watkins, G.; Pöykiö, R.; Nurmesniemi, H.; Dahl, O. Utilization of steel, pulp and paper industry solid residues in forest soil amendment: Relevant physicochemical properties and heavy metal availability. J. Hazard. Mater. 2012, 207–208, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Deng, T.H.B.; Gu, H.H.; Qiu, R.L. Effect of Steel Slag Application on Soil Improvement and Heavy Metal Uptake by Rice. J. Agric. Environ. Sci. 2011, 30, 455–460. [Google Scholar]
- Mombelli, D.; Mapelli, C.; Barella, S.; Di Cecca, C.; Le Saout, G.; Garcia-Diaz, E. The effect of chemical composition on the leaching behaviour of electric arc furnace (EAF) carbon steel slag during a standard leaching test. J. Environ. Chem. Eng. 2016, 4, 1050–1060. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, T.; Yokoyama, S. Bioassay of Components Eluted from Electric Arc Furnace Steel Slag Using Microalgae Chlorella. ISIJ Int. 2016, 56, 1497–1505. [Google Scholar] [CrossRef] [Green Version]
- Fisher, L.V.; Barron, A.R. The Recycling and Reuse of Steelmaking Slags—A Review. Resour. Conserv. Recycl. 2019, 146, 244–255. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.Y.; Zheng, A.R.; Li, W.Q.; Chen, Z.F.; Chen, D.; Lai, J. Effects of Nitrogen, Phosphor and Iron in Natural Colloids on the Compositions and Concentration of Fatty Acids in Microalgaes. J. Xiamen Univ. Nat. Sci. 2004, 43, 682–687. [Google Scholar]
- Yang, B.-M.; Lai, W.-L.; Chang, Y.-M.; Liang, Y.-S.; Kao, C.-M. Using desulfurization slag as the aquacultural amendment for fish pond water quality improvement: Mechanisms and effectiveness studies. J. Clean. Prod. 2017, 143, 1313–1326. [Google Scholar] [CrossRef]
- Sugie, K.; Taniguchi, A. Bioavailability and Dulability of the Iron Released from a Steelmaking Slag for Two Thalassiosira Species. Tetsu Hagane 2007, 93, 558–564. [Google Scholar] [CrossRef]
- Sugie, K.; Taniguchi, A. Continuous Supply of Bioavailable Iron for Marine Diatoms from Steelmaking Slag. ISIJ Int. 2011, 51, 513–520. [Google Scholar] [CrossRef]
- Yamamoto, T.; Osawa, K.; Asaoka, S.; Madinabeitia, I.; Liao, L.M.; Hirata, S. Enhancement of Marine Phytoplankton Growth by Steel-making Slag as a Promising Component for the Development of Algal Biofuels. ISIJ Int. 2016, 56, 708–713. [Google Scholar] [CrossRef] [Green Version]
- Arita, K.; Umiguchi, Y.; Taniguchi, A. Availability of Steelmaking Slag as a Source of Essential Elements for Phytoplankton. Tetsu Hagane 2003, 89, 415–421. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.L.; Wang, N.; Ling, H.Q. Uptake, Translocation and Regulation of Iron in Plants. Chin. Bull. Bot. 2007, 24, 779–788. [Google Scholar]
- Xia, J.L.; Li, L.; Wan, M.X. Isolation and Identification of Two Strains of Microalgae and the Effect of Fe3+ on Their Growth and Lipid Accumulation. J. Wuhan Univ. Nat. Sci. Ed. 2010, 56, 325–330. [Google Scholar]
- Yeesang, C.; Cheirsilp, B. Effect of nitrogen, salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand. Bioresour. Technol. 2011, 102, 3034–3040. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, P.H.; Wang, Y.; Luo, N.; Zhang, L.; Yang, X. Effects of concentrations of iron, calcium and magnesium on the growth and lipid accumulation of microalgal strain Desmodesmus sp. WC08. Guangdong Agric. Sci. 2014, 41, 126–130. [Google Scholar]
- Polat, E.; Yüksel, E.; Altınbaş, M. Effect of different iron sources on sustainable microalgae-based biodiesel production using Auxenochlorella protothecoides. Renew. Energy 2020, 162, 1970–1978. [Google Scholar] [CrossRef]
- Rizwan, M.; Mujtaba, G.; Lee, K. Effects of iron sources on the growth and lipid/carbohydrate production of marine microalga Dunaliella tertiolecta. Biotechnol. Bioprocess. Eng. 2017, 22, 68–75. [Google Scholar] [CrossRef]
- Pan, X.H.; Shi, Q.H.; Guo, J.; Wang, Y. Advance in the study of effects of inorganic phospate on plant leaf photosynthesis and its mechanism. J. Plant Nutr. Fertil. 1997, 3, 201–208. [Google Scholar]
- Cañavate, J.P.; Armada, I.; Hachero-Cruzado, I. Aspects of phosphorus physiology associated with phosphate-induced polar lipid remodelling in marine microalgae. J. Plant Physiol. 2017, 214, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Haraguchi, K.; Suzuki, K.; Taniguchi, A. Effects of Steelmaking Slag Addition on Growth of Marine Phytoplankton. ISIJ Int. 2003, 43, 1461–1468. [Google Scholar] [CrossRef] [Green Version]
- Jacob, J.; Lawlor, D.W. In vivo photosynthetic electron transport does not limit photosynthetic capacity in phosphate-deficient sunflower and maize leaves. Plant Cell Environ. 1993, 16, 785–795. [Google Scholar] [CrossRef]
- Fredeen, A.L.; Raab, T.K.; Terry, R.N. Effects of phosphorus nutrition on photosynthesis in Glycine max (L.) Merr. Planta 1990, 181, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Lippemeier, S.; Frampton, D.M.F.; Blackburn, S.I.; Geier, S.C.; Negri, A.P. Influence of phosphorus limitation on toxicity and photosynthesis of Alexandrium minutum (Dinophyceae) monitored by in-line detection of variable chlorophyll fluorescence. J. Phycol. 2003, 39, 320–331. [Google Scholar] [CrossRef]
- Egge, J.K.; Heimdal, B.R. Blooms of phytoplankton including Emiliania huxleyi (Haptophyta). Effects of nutrient supply in different N:P ratios. Sarsia 1994, 79, 333–348. [Google Scholar] [CrossRef]
- Tan, J.Y.; Zhao, L.H. Effects of nutritions on the C. vulgaris growth and on the content of saccharide. Chem. Bioeng. 2004, 21, 34–36+44. [Google Scholar]
- Zhang, Q. Effects of nitrogen and phosphorus on the growth of microalgae isochrysis. Trans. Oceanol. Limnol. 2002, 2, 45–51. [Google Scholar]
- Zhou, C.X.; Ma, B.; Wang, F.X.; Xu, B.; Yan, X.J. The population growth and variation of nitrate-N and phosphate-P in the mix-culture of Phaeodactylum tricornutum Bohl and Prorocentrum micans. Mar. Sci. 2006, 30, 58–61. [Google Scholar]
- Lin, L.I.; Zhu, W.; Luo, Y.G. Effects of calcium/magnesium ions on growth of Microcystis aeruginosa under water flow. Environ. Sci. Technol. 2012, 35, 9–13. [Google Scholar]
- Wykoff, D.D.; Davies, J.; Melis, A.; Grossman, A.R. The Regulation of Photosynthetic Electron Transport during Nutrient Deprivation in Chlamydomonas reinhardtii. Plant Physiol. 1998, 117, 129–139. [Google Scholar] [CrossRef] [Green Version]
- Ge, Z.Z.; Wang, J.; Zhou, C.C.; Yu, X.B. Optimization of medium for Chlorella vulgaris by response surface analysis. Sci. Technol. Food Ind. 2012, 33, 195–198, 203. [Google Scholar]
- Cheng, K.-C.; Ren, M.; Ogden, K.L. Statistical optimization of culture media for growth and lipid production of Chlorella protothecoides UTEX 250. Bioresour. Technol. 2013, 128, 44–48. [Google Scholar] [CrossRef]
- Li, J. Research progress on potassium, calcium and magnesium nutrients in plants. Fujian Sci. Technol. Rice Wheat 2007, 25, 39–42. [Google Scholar]
- Karemore, A.; Pal, R.; Sen, R. Strategic enhancement of algal biomass and lipid in Chlorococcum infusionum as bioenergy feedstock. Algal Res. 2013, 2, 113–121. [Google Scholar] [CrossRef]
- Huang, L.; Xu, J.-W.; Li, T.; Wang, L.; Deng, T.; Yu, X. Effects of additional Mg2+ on the growth, lipid production, and fatty acid composition of Monoraphidium sp. FXY-10 under different culture conditions. Ann. Microbiol. 2013, 64, 1247–1256. [Google Scholar] [CrossRef]
- Polat, E.; Yüksel, E.; Altınbaş, M. Mutual effect of sodium and magnesium on the cultivation of microalgae Auxenochlorella protothecoides. Biomass Bioenergy 2020, 132, 105441. [Google Scholar] [CrossRef]
- Zhou, T.; Wang, J.; Zheng, H.; Wu, X.; Wang, Y.; Liu, M.; Xiang, S.; Cao, L.; Ruan, R.; Liu, Y. Characterization of additional zinc ions on the growth, biochemical composition and photosynthetic performance from Spirulina platensis. Bioresour. Technol. 2018, 269, 285–291. [Google Scholar] [CrossRef]
- Li, X.; Yang, C.; Zeng, G.; Wu, S.; Lin, Y.; Zhou, Q.; Lou, W.; Du, C.; Nie, L.; Zhong, Y. Nutrient removal from swine wastewater with growing microalgae at various zinc concentrations. Algal Res. 2020, 46, 101804. [Google Scholar] [CrossRef]
- Yang, H.; Huang, Z.Y. Activities of antioxidant enzymes and Zn-MT-like proteins induced in Chlorella vulgaris exposed to Zn2+. Acta Ecol. Sin. 2012, 32, 7117–7123. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, B.N.; Gaur, J.P. Physiological behavior of Scenedesmus sp. during exposure to elevated levels of Cu and Zn and after withdrawal of metal stress. Protoplasma 2006, 229, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Hu, C.; Zhu, Q.; Chen, L.; Kong, Z.; Liu, Z. Copper and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in the microalga Pavlova viridis (Prymnesiophyceae). Chemosphere 2006, 62, 565–572. [Google Scholar] [CrossRef]
- Rijstenbil, J.W.; Derksen, J.W.M.; Gerringa, L.J.A.; Poortvliet, T.C.W.; Sandee, A.; Berg, M.V.D.; Van Drie, J.; Wijnholds, J.A. Oxidative stress induced by copper: Defense and damage in the marine planktonic diatom Ditylum brightwellii, grown in continuous cultures with high and low zinc levels. Mar. Biol. 1994, 119, 583–590. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Mu, J.; Chen, D.; Han, F.; Xu, H.; Kong, F.; Xie, F.; Feng, B. Production of biomass and lipid by the microalgae Chlorella protothecoides with heterotrophic-Cu(II) stressed (HCuS) coupling cultivation. Bioresour. Technol. 2013, 148, 283–292. [Google Scholar] [CrossRef]
- Liu, H.T.; Hou, G.Q.; Xi, Y.; Zhao, Y.J.; Xue, L.X. Bioaccumulation of copper ion in resistant and wild strains of Microcystis aeruginosa. J. Zhengzhou Univ. Med. Sci. 2004, 39, 54–57. [Google Scholar]
- Magdaleno, A.; Vélez, C.G.; Wenzel, M.T.; Tell, G. Effects of Cadmium, Copper and Zinc on Growth of Four Isolated Algae from a Highly Polluted Argentina River. Bull. Environ. Contam. Toxicol. 2013, 92, 202–207. [Google Scholar] [CrossRef]
- Wang, L.P.; Zheng, B.H.; Meng, W. Toxicity effects of heavy metal copper on two marine microalgae. Mar. Environ. Sci. 2007, 26, 6–9. [Google Scholar]
- Wang, L.; Liu, R.; Li, W.H.; Lei, C.; Zhao, H.J.; Zheng, Q.S. Effects of Stresses of Different Heavy Metals on Growth and Chlorophy II Fluorescence of Scendesmus obliquus. J. Ecol. Rural. Environ. 2015, 31, 743–747. [Google Scholar]
Types of Elements in Steel Slag | Types of Microalgae | Growth Condition | Effects on Growth and Metabolite Accumulation | Reference |
---|---|---|---|---|
Fe | Chlorella sp. | 25 mg/L | Promoting Growth | [52] |
Thalassiosira nordenskioeldii | Promoting Growth | [54] | ||
Thalassiosira oceanica | Promoting Growth | |||
Thalassiosira guillardii | Promoting Growth | [56] | ||
Isochrysis galbana | 1 × 10−4 mol/L | Promoting Growth and Lipid Accumulation | [58] | |
Botryococcus sp. | Promoting Oil Accumulation | [59] | ||
Desmodesmus sp. WC08 | 2 × 10−5 mmol/L | Promoting Growth and Oil Accumulation | [60] | |
Auxenochlorella protothecoides | Promoting Growth | [61] | ||
Dunaliella tertiolecta | Promoting Growth and Oil Accumulation | [62] | ||
P | Thalassiosira guillardii | 33 mg/L | Promoting Growth | [65] |
Phaeocystis globosa | Influencing Growth | [69] | ||
Chlorella sp. | Influencing Growth | [70] | ||
Chrysophyta | 5 μmol/L | Promoting Growth | [71] | |
Prorocentrum micans | 0.85 μmol/L | Promoting Growth | [72] | |
Heterosigma akashiwo | 0~0.05 mg/L | Inhibiting Growth | [73] | |
0~1.0 mg/L | Promoting Growth | |||
>5.0 mg/L | Influencing Growth | |||
Chlamydomonas reinhardtii | Influencing Growth | [74] | ||
Ca | Chlorella sp. | more than 30 vol% of slag leaching solution | Promoting Growth | [49] |
Desmodesmus sp. WC08 | 0.05 mmol/L | Promoting Growth and Lipid Accumulation | [60] | |
Mg | Chlorococcum infudionum | >10 mg/L | Inhibiting Growth | [78] |
Chlorella sp. | Removing | Promoting Growth and Lipid Accumulation | [76] | |
Monoraphidium sp. FXY-10 | 100 μM | Promoting Accumulation of Lipid Content | [79] | |
Auxenochlorella protothecoides | 18.5 mg/L Mg2+ and 5.0 g/L NaCl | Promoting Accumulation of Lipid Content | [80] | |
Desmodesmus sp. WC08 | 0.09 mmol/L | Promoting Growth and Oil Accumulation | [60] | |
Zn | Arthrospira platensis | High Zinc Condition | Inhibiting Growth | [81] |
1.0 mg/L | Promoting Accumulation of Carotenoids | |||
Coelastrella sp. | Inhibiting Growth | [82] | ||
6.0 mg/L | Promoting Accumulation of SOD | |||
8.0 mg/L | Promoting Accumulation of Adenosine Triphosphate | |||
Promoting Accumulation of Protein, SOD, Glutathione and ATP | [17] | |||
Chlorella vulgaris | Promoting Accumulation of SOD | [83] | ||
Inhibiting Accumulation of POD | ||||
Scenedesmus sp. | 0.005 Mm | Promoting Accumulation of TBARS, SOD, APOX, CAT and GR | [84] | |
Pavlova viridis | 3.25 mg/L | Promoting Accumulation of TBARS | [85] | |
1.3 mg/L | Promoting Accumulation of CAT | |||
Inhibiting Accumulation of GPX | ||||
Cu | Pavlova viridis | >0.5 mg/L | Promoting Accumulation of MDA | [17] |
3 mg/L | Promoting Accumulation of GSH, SOD, CAT, GPX | |||
Ditylum brightwellii | Promoting Accumulation of SOD | [86] | ||
Chlorella protothecoides | Promoting Lipid Accumulation | [87] | ||
Microcystis aeruginosa | Inhibiting Growth | [88] | ||
Chlorella ellipsoidea | Inhibiting Growth | [89] | ||
Monoraphidium contortum | Inhibiting Growth | |||
Scenedesmus acuminatus | Inhibiting Growth | |||
Skeletonema costatum | Inhibiting Growth | [90] | ||
Promoting Accumulation of MDA | ||||
Low Concentration Induction | SOD, POD | |||
High Concentration Inhibition | ||||
Phaeodactylum tricornutum | Inhibiting Growth | |||
Promoting Accumulation of MDA | ||||
Low Concentration Induction | SOD, POD | |||
High Concentration Inhibition | ||||
Scenedesmus obliquus | Inhibiting Growth | [91] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, T.; Wang, Y.; Li, J.; Yu, Q.; Wang, X.; Gao, D.; Wang, F.; Cai, S.; Zeng, Y. Effects from Fe, P, Ca, Mg, Zn and Cu in Steel Slag on Growth and Metabolite Accumulation of Microalgae: A Review. Appl. Sci. 2021, 11, 6589. https://doi.org/10.3390/app11146589
Liu T, Wang Y, Li J, Yu Q, Wang X, Gao D, Wang F, Cai S, Zeng Y. Effects from Fe, P, Ca, Mg, Zn and Cu in Steel Slag on Growth and Metabolite Accumulation of Microalgae: A Review. Applied Sciences. 2021; 11(14):6589. https://doi.org/10.3390/app11146589
Chicago/Turabian StyleLiu, Tianji, Yitong Wang, Junguo Li, Qing Yu, Xiaoman Wang, Di Gao, Fuping Wang, Shuang Cai, and Yanan Zeng. 2021. "Effects from Fe, P, Ca, Mg, Zn and Cu in Steel Slag on Growth and Metabolite Accumulation of Microalgae: A Review" Applied Sciences 11, no. 14: 6589. https://doi.org/10.3390/app11146589