Variational Reward Estimator Bottleneck: Towards Robust Reward Estimator for Multidomain Task-Oriented Dialogue
Abstract
:1. Introduction
2. Background
2.1. Dialogue State Tracker
2.2. User Simulator
2.3. Policy Generator
3. Proposed Method
3.1. Notations on MDP
3.2. Reward Estimator
3.3. Variational Reward Estimator Bottleneck
Algorithm 1 Algorithm of Variational Reward Estimator Bottleneck |
4. Experimental Setup
4.1. Dataset Details
4.2. Models Details
4.3. Evaluation Details
5. Main Results
5.1. Experimental Results of Agenda-Based User Simulators
5.2. Experimental Results of VHUS-Based User Simulators
5.3. Verification of Robustness
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schrittwieser, J.; Antonoglou, I.; Hubert, T.; Simonyan, K.; Sifre, L.; Schmitt, S.; Guez, A.; Lockhart, E.; Hassabis, D.; Graepel, T.; et al. Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model. CoRR 2019. [Google Scholar] [CrossRef]
- Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam, V.; Lanctot, M.; et al. Mastering the game of Go with deep neural networks and tree search. Nature 2016, 529, 484–503. [Google Scholar] [CrossRef] [PubMed]
- Campbell, M.; Hoane, A.; hsiung Hsu, F. Deep Blue. Artif. Intell. 2002, 134, 57–83. [Google Scholar] [CrossRef] [Green Version]
- Schaeffer, J.; Culberson, J.; Treloar, N.; Knight, B.; Lu, P.; Szafron, D. A world championship caliber checkers program. Artif. Intell. 1992, 53, 273–289. [Google Scholar] [CrossRef]
- Brown, N.; Sandholm, T. Superhuman AI for heads-up no-limit poker: Libratus beats top professionals. Science 2018, 359, 418–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moravcík, M.; Schmid, M.; Burch, N.; Lisý, V.; Morrill, D.; Bard, N.; Davis, T.; Waugh, K.; Johanson, M.; Bowling, M.H. DeepStack: Expert-Level Artificial Intelligence in No-Limit Poker. CoRR 2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peters, J.; Schaal, S. Reinforcement Learning of Motor Skills with Policy Gradients. Neural Netw. 2008, 21, 682–697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haarnoja, T.; Zhou, A.; Abbeel, P.; Levine, S. Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor. In Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; Dy, J., Krause, A., Eds.; Volume 80, pp. 1861–1870. [Google Scholar]
- Kiran, B.R.; Sobh, I.; Talpaert, V.; Mannion, P.; Sallab, A.A.A.; Yogamani, S.K.; Pérez, P. Deep Reinforcement Learning for Autonomous Driving: A Survey. CoRR 2020, arXiv:2002.00444. [Google Scholar]
- Wu, J.; Huang, Z.; Lv, C. Uncertainty-Aware Model-Based Reinforcement Learning with Application to Autonomous Driving. arXiv 2021, arXiv:2106.12194. [Google Scholar]
- Zhao, X.; Zhang, L.; Ding, Z.; Xia, L.; Tang, J.; Yin, D. Recommendations with Negative Feedback via Pairwise Deep Reinforcement Learning. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Yao, L.; Sun, A.; Tay, Y. Deep Learning Based Recommender System. ACM Comput. Surv. 2019, 52, 1–38. [Google Scholar] [CrossRef] [Green Version]
- Zhao, T.; Eskenazi, M. Towards End-to-End Learning for Dialog State Tracking and Management using Deep Reinforcement Learning. In Proceedings of the 17th Annual Meeting of the Special Interest Group on Discourse and Dialogue; Association for Computational Linguistics: Los Angeles, CA, USA, 2016; pp. 1–10. [Google Scholar] [CrossRef]
- Dhingra, B.; Li, L.; Li, X.; Gao, J.; Chen, Y.N.; Ahmed, F.; Deng, L. Towards End-to-End Reinforcement Learning of Dialogue Agents for Information Access. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Vancouver, AB, Canada, 30 July–4 August 2017. [Google Scholar] [CrossRef] [Green Version]
- Shi, W.; Yu, Z. Sentiment Adaptive End-to-End Dialog Systems. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Melbourne, QC, Australia, 15–20 July 2018. [Google Scholar] [CrossRef] [Green Version]
- Shah, P.; Hakkani-Tür, D.; Liu, B.; Tür, G. Bootstrapping a Neural Conversational Agent with Dialogue Self-Play, Crowdsourcing and On-Line Reinforcement Learning. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 3 (Industry Papers); Association for Computational Linguistics: New Orleans, LA, USA, 2018; pp. 41–51. [Google Scholar] [CrossRef]
- Ziebart, B.D.; Maas, A.L.; Bagnell, J.A.; Dey, A.K. Maximum Entropy Inverse Reinforcement Learning; AAAI: Chicago, IL, USA, 2008; Volume 8, pp. 1433–1438. [Google Scholar]
- Russell, S. Learning agents for uncertain environments. In Proceedings of the Eleventh Annual Conference on Computational Learning Theory, Madison, WI, USA, 24–26 July 1998; pp. 101–103. [Google Scholar]
- Ng, A.; Russell, S. Algorithms for Inverse Reinforcement Learning. In Proceedings of the ICML’00 Seventeenth International Conference on Machine Learning, Stanford, CA, USA, 29 June–2 July 2000. [Google Scholar]
- Ho, J.; Ermon, S. Generative Adversarial Imitation Learning. In Advances in Neural Information Processing Systems 29, International Barcelona Convention Center; Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2016; pp. 4565–4573. [Google Scholar]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Nets. In Advances in Neural Information Processing Systems 27; Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2014; pp. 2672–2680. [Google Scholar]
- Fu, J.; Luo, K.; Levine, S. Learning Robust Rewards with Adverserial Inverse Reinforcement Learning. In Proceedings of the 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Takanobu, R.; Zhu, H.; Huang, M. Guided Dialog Policy Learning: Reward Estimation for Multi-Domain Task-Oriented Dialog. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP); Association for Computational Linguistics: Hong Kong, China, 2019; pp. 100–110. [Google Scholar] [CrossRef]
- Tishby, N.; Pereira, F.C.; Bialek, W. The information bottleneck method. In Proceedings of the 37-th Annual Allerton Conference on Communication, Control and Computing, Monticello, IL, USA, 22–24 September 1999; pp. 368–377. [Google Scholar]
- Alemi, A.A.; Fischer, I.; Dillon, J.V.; Murphy, K. Deep Variational Information Bottleneck. arXiv 2016, arXiv:1612.00410. [Google Scholar]
- Peng, X.B.; Kanazawa, A.; Toyer, S.; Abbeel, P.; Levine, S. Variational Discriminator Bottleneck: Improving Imitation Learning, Inverse RL, and GANs by Constraining Information Flow. In Proceedings of the International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019. [Google Scholar]
- Williams, J.; Raux, A.; Henderson, M. The Dialog State Tracking Challenge Series: A Review. Dialogue Discourse 2016, 7, 4–33. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, M.; Zhao, Z.; Ji, F.; Chen, H.; Zhu, X. Memory-Augmented Dialogue Management for Task-Oriented Dialogue Systems. ACM Trans. Inf. Syst. 2019, 37. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.S.; Madotto, A.; Hosseini-Asl, E.; Xiong, C.; Socher, R.; Fung, P. Transferable Multi-Domain State Generator for Task-Oriented Dialogue Systems. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, 28 July–2 August 2019. [Google Scholar] [CrossRef] [Green Version]
- Schatzmann, J.; Thomson, B.; Weilhammer, K.; Ye, H.; Young, S. Agenda-Based User Simulation for Bootstrapping a POMDP Dialogue System. In Human Language Technologies 2007: The Conference of the North American Chapter of the Association for Computational Linguistics; Companion Volume, Short Papers; Association for Computational Linguistics: Rochester, NY, USA, 2007; pp. 149–152. [Google Scholar]
- Gür, I.; Hakkani-Tür, D.; Tür, G.; Shah, P. User modeling for task oriented dialogues. In Proceedings of the 2018 IEEE Spoken Language Technology Workshop (SLT), Athens, Greece, 18–21 December 2018; pp. 900–906. [Google Scholar]
- Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M.; Moritz, P. Trust Region Policy Optimization. In Proceedings of the 32nd International Conference on Machine Learning; Bach, F., Blei, D., Eds.; PMLR: Lille, France, 2015; Volume 37, pp. 1889–1897. [Google Scholar]
- Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal policy optimization algorithms. arXiv 2017, arXiv:1707.06347. [Google Scholar]
- Schulman, J.; Moritz, P.; Levine, S.; Jordan, M.; Abbeel, P. High-dimensional continuous control using generalized advantage estimation. In Proceedings of the International Conference on Learning Representations, San Juan, Puerto Rico, 2–4 May 2016. [Google Scholar]
- Finn, C.; Levine, S.; Abbeel, P. Guided Cost Learning: Deep Inverse Optimal Control via Policy Optimization. In Proceedings of the 33rd International Conference on International Conference on Machine Learning—Volume 48. JMLR.org, ICML’16, New York, NY, USA, 19–24 June 2016; pp. 49–58. [Google Scholar]
- Budzianowski, P.; Wen, T.H.; Tseng, B.H.; Casanueva, I.; Ultes, S.; Ramadan, O.; Gašić, M. MultiWOZ—A Large-Scale Multi-Domain Wizard-of-Oz Dataset for Task-Oriented Dialogue Modelling. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing; Association for Computational Linguistics: Brussels, Belgium, 2018; pp. 5016–5026. [Google Scholar] [CrossRef] [Green Version]
- Gašić, M.; Mrkšić, N.; Su, P.; Vandyke, D.; Wen, T.; Young, S. Policy committee for adaptation in multi-domain spoken dialogue systems. In Proceedings of the 2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU), Scottsdale, AZ, USA, 13–17 December 2015; pp. 806–812. [Google Scholar]
- Wang, Z.; Bapst, V.; Heess, N.; Mnih, V.; Munos, R.; Kavukcuoglu, K.; de Freitas, N. Sample Efficient Actor-Critic with Experience Replay. In Proceedings of the 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, 24–26 April 2017. [Google Scholar]
- Liu, B.; Lane, I. Adversarial Learning of Task-Oriented Neural Dialog Models. In Proceedings of the 19th Annual SIGdial Meeting on Discourse and Dialogue; Association for Computational Linguistics: Melbourne, Australia, 2018; pp. 350–359. [Google Scholar] [CrossRef]
- Tresp, V. A Bayesian Committee Machine. Neural Comput. 2000, 12, 2719–2741. [Google Scholar] [CrossRef] [PubMed]
Hyperparameters | Value |
---|---|
Lagrange multiplier | 0.001 |
Upper bound | 0.5 |
Learning rate of dialogue policy | 0.0001 |
Learning rate of reward estimator | 0.0001 |
Learning rate of user simulator | 0.001 |
Clipping component for dialogue policy | 0.02 |
GAE component for dialogue policy | 0.95 |
Model | Agenda | |||
---|---|---|---|---|
Turns | Match | Inform | Success | |
GP-MBCM [37] | 2.99 | 44.29 | 19.04 | 28.9 |
ACER [38] | 10.49 | 62.83 | 77.98 | 50.8 |
PPO [33] | 9.83 | 69.09 | 83.34 | 59.1 |
ALDM [39] | 12.47 | 62.60 | 81.20 | 61.2 |
GDPL [23] | 7.64 | 83.90 | 94.97 | 86.5 |
VRB (Ours) | 7.59 | 90.87 | 90.97 | 90.4 |
Human | 7.37 | 95.29 | 66.89 | 75.0 |
Model | VHUS | |||
---|---|---|---|---|
Turns | Match | Inform | Success | |
GP-MBCM [37] | - | - | - | - |
ACER [38] | 22.35 | 33.08 | 55.13 | 18.6 |
PPO [33] | 19.23 | 33.08 | 56.31 | 18.3 |
ALDM [39] | 26.90 | 24.15 | 54.37 | 16.4 |
GDPL [23] | 22.43 | 36.21 | 52.58 | 19.7 |
VRB (Ours) | 20.96 | 44.93 | 56.93 | 20.1 |
VRB | PPO | ||
---|---|---|---|
U: | {‘attraction-inform-area-1’: ’south’} | U: | {‘attraction-inform-area-1’: ‘south’} |
S: | {‘attraction-inform-choice-1’: ‘8’, ‘attraction-request-type-?’: ‘?’} | S: | {‘attraction-inform-choice-1’: ‘8’, ‘attraction-request-type-?’: ‘?’} |
U: | {‘attraction-request-post-?’: ‘?’, ‘attraction-request-phone-?’: ‘?’, ’attraction-request-addr-?’: ‘?’, ‘attraction-request-fee-?’: ‘?’, ‘attraction-request-type-?’: ‘?’} | U: | {‘attraction-request-post-?’: ‘?’, ‘attraction-request-phone-?’: ‘?’, ‘attraction-request-addr-?’: ‘?’, ‘attraction-request-fee-?’: ‘?’, ‘attraction-request-type-?’: ‘?’} |
S: | {‘attraction-inform-name-1’: ‘the junction’, ‘attraction-recommend-name-1’: ‘the junction’, ‘attraction-recommend-addr-1’: ‘clifton way’} | S: | {‘attraction-inform-name-1’: ‘the junction’, ‘attraction-inform-fee-1’: ‘?’, ‘attraction-recommend-name-1’: ‘the junction’} |
U: | {‘attraction-request-post-?’: ‘?’, ‘attraction-request-phone-?’: ‘?’, ‘attraction-request-fee-?’: ‘?’, ‘attraction-request-type-?’: ‘?’} | U: | {‘attraction-request-post-?’: ‘?’, ‘attraction-request-phone-?’: ‘?’, ‘attraction-request-addr-?’: ‘?’, ‘attraction-request-type-?’: ‘?’} |
S: | {‘attraction-inform-fee-1’: ‘?’, ‘attraction-inform-phone-1’: ‘01223511511’, ‘attraction-inform-post-1’: ‘cb17gx’} | S: | {‘attraction-inform-name-1’: ‘the junction’, ‘attraction-inform-addr-1’: ‘clifton way’, ‘attraction-inform-phone-1’: ‘01223511511’, ‘attraction-inform-post-1’: ‘cb17gx’} |
U: | {‘attraction-request-type-?’: ‘?’} | U: | {‘attraction-request-type-?’: ‘?’} |
S: | {‘attraction-inform-type-1’: ‘museum’} | S: | {} |
U: | {‘hotel-inform-price-1’: ‘cheap’, ‘hotel-inform-area-1’: ‘centre’} | U: | {‘attraction-request-type-?’: ‘?’} |
S: | {‘hotel-inform-name-1’: ‘alexander bed and breakfast’} | S: | {} |
U: | {‘hotel-request-post-?’: ‘?’, ‘hotel-request-phone-?’: ‘?’} | U: | {‘attraction-request-type-?’: ‘?’} |
S: | {‘general-reqmore-none-none’: ‘none’, ‘hotel-inform-phone-1’: ‘01223525725’, ‘hotel-inform-post-1’: ‘cb12de’} | S: | {} |
U: | {‘hotel-inform-stay-1’: ‘dont care’, ‘hotel-inform-day-1’: ‘dont care’, ‘hotel-inform-people-1’: ‘dont care’} | U: | {‘attraction-request-type-?’: ‘?’} |
S: | {‘booking-book-ref-1’: ‘none’} | S: | {} |
U: | {‘general-bye-none-none’: ‘none’} | U: | {‘attraction-request-type-?’: ‘?’} |
S: | {} | ||
U: | {‘attraction-request-type-?’: ‘?’} | ||
S: | {} | ||
U: | {‘attraction-request-type-?’: ‘?’} | ||
S: | {} | ||
U: | {‘attraction-request-type-?’: ‘?’} | ||
S: | {} | ||
U: | {‘attraction-request-type-?’: ‘?’} | ||
S: | {} | ||
U: | {‘attraction-request-type-?’: ‘?’} | ||
S: | {} | ||
U: | {‘attraction-request-type-?’: ‘?’} | ||
S: | {} | ||
U: | {‘attraction-request-type-?’: ‘?’} | ||
S: | {} | ||
U: | {‘attraction-request-type-?’: ‘?’} | ||
S: | {} | ||
U: | {‘attraction-request-type-?’: ‘?’} | ||
S: | {} | ||
U: | {‘attraction-request-type-?’: ‘?’} | ||
S: | {} | ||
U: | {‘attraction-request-type-?’: ‘?’} | ||
S: | {} | ||
U: | {‘attraction-request-type-?’: ‘?’} | ||
S: | {} | ||
U: | {‘attraction-request-type-?’: ‘?’} | ||
S: | {} | ||
U: | {‘general-bye-none-none’: ‘none’} | ||
turn: 8 match: 1.0 inform: (1.0, 1.0, 1.0) | turn: 22 match: 0.0 inform: (0, 0, 0) | ||
Success | Failure |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.; Lee, C.; Park, C.; Kim, K.; Lim, H. Variational Reward Estimator Bottleneck: Towards Robust Reward Estimator for Multidomain Task-Oriented Dialogue. Appl. Sci. 2021, 11, 6624. https://doi.org/10.3390/app11146624
Park J, Lee C, Park C, Kim K, Lim H. Variational Reward Estimator Bottleneck: Towards Robust Reward Estimator for Multidomain Task-Oriented Dialogue. Applied Sciences. 2021; 11(14):6624. https://doi.org/10.3390/app11146624
Chicago/Turabian StylePark, Jeiyoon, Chanhee Lee, Chanjun Park, Kuekyeng Kim, and Heuiseok Lim. 2021. "Variational Reward Estimator Bottleneck: Towards Robust Reward Estimator for Multidomain Task-Oriented Dialogue" Applied Sciences 11, no. 14: 6624. https://doi.org/10.3390/app11146624